+0  
 
0
81
1
avatar

\(\int_{}^{}\int_{}^{}\)𝑥2+ 𝑦2 𝑑𝐴; 𝑅 ={ ( 𝑥, 𝑦 ) | −1 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 2 }

Guest Mar 22, 2017
Sort: 

1+0 Answers

 #1
avatar+6765 
0

That means \(\displaystyle\int^{2}_{0}\int^{1}_{-1}x^2+y^2 dx dy\)

\(\displaystyle\int^{2}_{0}\int^{1}_{-1}x^2+y^2 dx dy\\ =\displaystyle\int^{2}_{0}\left[\dfrac{x^3}{3}+xy^2\right]^{1}_{-1}dy\\ =\displaystyle\int^{2}_{0}\left(\dfrac{2}{3}+2y^2\right)dy\\ =\left[\dfrac{2y}{3}+\dfrac{2y^3}{3}\right]^{2}_{0}\\ =\dfrac{20}{3}\)

MaxWong  Mar 23, 2017

9 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details