+0

# a constant loop :/

0
120
3
+121

hello,

I'm trying to find the indefinite integral of :

$$\int e^{5x}sin(3x) dx$$

I get to a point and it just becomes a loop?

where do I go from here?

I get to = $$\frac{e^{5x}sin(3x)}{5}-\frac{3e^{5x}cos(3x)}{25}-\int \frac{-9e^{5x}sin(3x)}{25}dx$$

then solving for $$\int \frac{-9e^{5x}sin(3x)}{25}dx$$

becomes: $$\frac{-9}{25}\int e^{5x}sin(3x)$$

then the loop repeats, I'm so confused where to go from here.

Your help is much appreciated !

vest4R  May 27, 2017
Sort:

#1
+2

Take the integral:
integral e^(5 x) sin(3 x) dx

For the integrand e^(5 x) sin(3 x), integrate by parts, integral f dg = f g - integral g df, where
f = sin(3 x), dg = e^(5 x) dx, df = 3 cos(3 x) dx, g = e^(5 x)/5:

integral e^(5 x) sin(3 x) dx = 1/5 e^(5 x) sin(3 x) - 3/5 integral e^(5 x) cos(3 x) dx
For the integrand e^(5 x) cos(3 x), integrate by parts, integral f dg = f g - integral g df, where
f = cos(3 x), dg = e^(5 x) dx, df = -3 sin(3 x) dx, g = e^(5 x)/5:

integral e^(5 x) sin(3 x) dx = 1/5 e^(5 x) sin(3 x) - 3/25 e^(5 x) cos(3 x) - 9/25 integral e^(5 x) sin(3 x) dx
Add 9/25 integral e^(5 x) sin(3 x) dx to both sides:

34/25 integral e^(5 x) sin(3 x) dx = 1/5 e^(5 x) sin(3 x) - 3/25 e^(5 x) cos(3 x) + constant
Multiply both sides by 25/34:

integral e^(5 x) sin(3 x) dx = 25/34 (1/5 e^(5 x) sin(3 x) - 3/25 e^(5 x) cos(3 x)) + constant
Which is equal to:
Answer: | = 1/34 e^(5 x) (5 sin(3 x) - 3 cos(3 x)) + constant

Guest May 27, 2017
#2
+90544
+3

Yes, there is a loop :)

$$\int e^{5x}sin(3x)dx=[\frac{e^{5x}}{5}\cdot sin(3x)]-\int \frac{e^{5x}}{5}\cdot3cos(3x)dx\\ \int e^{5x}sin(3x)dx=\frac{e^{5x} sin(3x)}{5}-\frac{3}{5}\int e^{5x}cos(3x)dx\\ \int e^{5x}sin(3x)dx=\frac{e^{5x} sin(3x)}{5}-\frac{3}{5}\left[(\frac{e^{5x}cos(3x)}{5})-\int \frac{-3}{5} e^{5x}sin(3x)dx\right]\\ \int e^{5x}sin(3x)dx=\frac{e^{5x} sin(3x)}{5}-\frac{3e^{5x}cos(3x)}{25}- \frac{9}{25}\int e^{5x}sin(3x)dx+c\\ \int e^{5x}sin(3x)dx+ \frac{9}{25}\int e^{5x}sin(3x)dx=\frac{e^{5x} sin(3x)}{5}-\frac{3e^{5x}cos(3x)}{25}+c\\ \frac{34}{25}\int e^{5x}sin(3x)dx=\frac{5e^{5x} sin(3x)}{25}-\frac{3e^{5x}cos(3x)}{25}+c\\ \int e^{5x}sin(3x)dx=\frac{5e^{5x} sin(3x)}{34}-\frac{3e^{5x}cos(3x)}{34}+c\\ \int e^{5x}sin(3x)dx=\frac{e^{5x} (5sin(3x)-3cos(3x))}{34}+c$$

Melody  May 27, 2017
#3
+8763
+2
Omi67  May 27, 2017

### 13 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details