+0  
 
0
123
2
avatar

Advanced Functions Trigonemetry

Given that sinx=(1/2) in quadrant 1 and siny=(1/4) in quadrant 1, find the exact value of 

 

sin (x+y)

 

i already did the question but im unsure if i did it right,

 

i got cosx as root 3 over 2 and cosy as root 15 over 4

 

if my math is correct, using the compound angle formula, i should get root 15 plus root 3 over root 8

 

could someone please check if i am right and if not, please explain to me how i need to get the right answer? 

thank you :)

Guest May 26, 2017
Sort: 

2+0 Answers

 #1
avatar+77064 
+2

 

sin ( x + y)   =   sinx cos y  +  sin y cos x

 

cos x  =   sqrt  ( 1 - sin^2 x)   =   sqrt [ 1 - (1/2)2 ]  = sqrt  ( 1 - 1/4)   =  sqrt (3/4)   = sqrt (3)/2

 

cos y  =  sqrt  ( 1 - sin^2 y )   =  sqrt [ 1 - (1/4)^2  ]  =    sqrt [ 1 - 1/16]  =   sqrt (15/16)  = sqrt (15) /4

 

So

 

sin ( x + y)   =  

 

sinx cos y  +  sin y cos x    = 

 

( 1/2) * sqrt(15)  /  4      +    (1/4) * sqrt (3) / 2    =

 

sqrt (15) / 8   +   sqrt (3) / 8  =

 

[ sqrt (15) + sqrt (3) ]   / 8

 

Correct.....!!!

 

 

cool cool cool

CPhill  May 26, 2017
 #2
avatar
+1

thank you smiley

Guest May 26, 2017

9 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details