+0

# Algebra 2

+1
153
2

What is the solution to the system of equations?

{ 2x+y-z=-3, 5x-2y+2z=24, 3x-z=5}?

Options: (4,1,8) (-1,0,-8) (2,-6,1) or (-5,4,-3) Sorry, I'm just really stuck on this one

Guest Sep 12, 2017
Sort:

#1
0

I figured it out, nvm. It is actually choice 3. Lol sorry

Guest Sep 12, 2017
#2
+18827
0

What is the solution to the system of equations?

{ 2x+y-z=-3, 5x-2y+2z=24, 3x-z=5}?

Options: (4,1,8) (-1,0,-8) (2,-6,1) or (-5,4,-3)

$$\small{ \begin{array}{|lcl|} \hline x &=& \dfrac{ \begin{vmatrix} -3&1&-1 \\ 24&-2&2 \\ 5&0&-1 \\ \end{vmatrix} }{\begin{vmatrix} 2&1&-1 \\ 5&-2&2 \\ 3&0&-1 \\ \end{vmatrix} } \\\\ &=&\dfrac{ 5\cdot [1\cdot 2- (-2) \cdot (-1) ] -1 \cdot [(-3)\cdot (-2) - 24\cdot 1 ] } {3\cdot [1\cdot 2 - (-2) \cdot (-1)] -1 \cdot [(2\cdot (-2) - 5\cdot 1] } \\\\ &=&\dfrac{ 0 -1 \cdot (-18) } {0 -1 \cdot (-9) } \\\\ &=&\dfrac{ 18 } {9} \\\\ \mathbf{x} & \mathbf{=} & \mathbf{2}\\ \hline \end{array} }$$

$$\small{ \begin{array}{|lcl|} \hline z &=& \dfrac{ \begin{vmatrix} 2&1&-3 \\ 5&-2&24 \\ 3&0&5 \\ \end{vmatrix} }{\begin{vmatrix} 2&1&-1 \\ 5&-2&2 \\ 3&0&-1 \\ \end{vmatrix}} \\\\ &=&\dfrac{ 3\cdot [1\cdot 24- (-2) \cdot (-3) ] +5 \cdot [2\cdot (-2) - 5\cdot 1 ] } {9 } \\\\ &=&\dfrac{ 3\cdot 18 +5\cdot (-9) } {9} \\\\ &=&\dfrac{ 9 } {9} \\\\ \mathbf{z} & \mathbf{=} & \mathbf{1}\\ \hline \end{array} }$$

$$\begin{array}{|lcl|} \hline y &=& -3 + z - 2x \\ &=& -3 + 1 - 2\cdot 2 \\ &=& -3 + 1 - 4 \\ \mathbf{y} & \mathbf{=} & \mathbf{ -6}\\ \hline \end{array}$$

Result (2,-6,1)

heureka  Sep 12, 2017

### 23 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details