+0

# Algebra help?

0
53
1
1. Which ordered pairs are solutions to the inequality 5𝑥 − 𝑦 ≤ 20 Select each correct answer
1. (10,8)
2. (5,6)
3. C. (2,1)
4. D. (6,4)

Find the slope between these points and graph. (5,2) and (-1,4)

The equation for this line is 𝑦 > 9

Guest Oct 4, 2017

#1
+4711
+2

5x - y  ≤  20

We have to test each ordered pair to see if it makes the equation true.

1.   (10, 8)

5(10) - 8  ≤  20

50 - 8  ≤  20

42  ≤  20     →     false

2.   (5, 6)

5(5) - 6  ≤  20

25 - 6  ≤  20

19  ≤  20     →     true

3.   (2, 1)

5(2)  -  1  ≤  20

10  -  1  ≤  20

9  ≤  20       →     true

4.   (6, 4)

5(6) - 4  ≤  20

30 - 4  ≤  20

26  ≤  20     →     false

The ordered pairs that make the equation true are solutions to the inequality.

----------

slope  =  $$\frac{\text{change in y}}{\text{change in x}}\,=\,\frac{y_2-y_1}{x_2-x_1}\,=\,\frac{4-2}{-1-5}\,=\,\frac{2}{-6}\,=\,-\frac{1}{3}$$

----------

y  >  9

First, draw a dotted line at  y = 9 ,

then shade all of the values where y is greater than 9 , which is all of the values above y = 9 .... like this.

hectictar  Oct 4, 2017
edited by hectictar  Oct 4, 2017
Sort:

#1
+4711
+2

5x - y  ≤  20

We have to test each ordered pair to see if it makes the equation true.

1.   (10, 8)

5(10) - 8  ≤  20

50 - 8  ≤  20

42  ≤  20     →     false

2.   (5, 6)

5(5) - 6  ≤  20

25 - 6  ≤  20

19  ≤  20     →     true

3.   (2, 1)

5(2)  -  1  ≤  20

10  -  1  ≤  20

9  ≤  20       →     true

4.   (6, 4)

5(6) - 4  ≤  20

30 - 4  ≤  20

26  ≤  20     →     false

The ordered pairs that make the equation true are solutions to the inequality.

----------

slope  =  $$\frac{\text{change in y}}{\text{change in x}}\,=\,\frac{y_2-y_1}{x_2-x_1}\,=\,\frac{4-2}{-1-5}\,=\,\frac{2}{-6}\,=\,-\frac{1}{3}$$

----------

y  >  9

First, draw a dotted line at  y = 9 ,

then shade all of the values where y is greater than 9 , which is all of the values above y = 9 .... like this.

hectictar  Oct 4, 2017
edited by hectictar  Oct 4, 2017

### 19 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details