+0  
 
+1
48
2
avatar+497 

a) Suppose the domain of $f$ is $(-1,1)$. Define the function $g$ by \(g(x)=f(x+1).\) What is the domain of $g$?

 

b) Suppose the domain of $f$ is $(-1,1)$. Define the function $h$ by \(h(x)=f(x)+1.\) What is the domain of $h$?

 

c) Suppose the domain of $f$ is $(-1,1)$. Define the function $j$ by \($j(x)=f(1/x).\) What is the domain of $j$?

 

d) Suppose the domain of $f$ is $(-1,1)$. Define the function $k$ by \(k(x)=f\left(\sqrt x\right)\) What is the domain of $k$?

 

e)Suppose the domain of $f$ is $(-1,1)$. Define the function $\ell$ by \(\ell(x)=f\left(\frac{x+1}{x-1}\right)\) What is the domain of $\ell$?

 
michaelcai  Dec 5, 2017

Best Answer 

 #2
avatar+5552 
+3

a)     g(x)  =  f(x + 1)

 

The domain of  f  is  (-1, 1) ,  so   x + 1   has to be in the interval   (-1, 1) .

 

-1  <  x + 1  <  1      Subtract  1  from each part of the inequality.

-2  <  x  <  0

 

So the domain of  g(x)  is  (-2, 0) .

 

 

b)     h(x)  =  f(x) + 1

 

The domain of  f  is  (-1, 1) ,  so   x   has to be in the interval   (-1, 1) .

 

So the domain of  g(x)  is  (-1, 1) .

 

 

c)     j(x)  =  f( 1/x )

 

The domain of  f  is  (-1, 1) ,  so   1/x   has to be in the interval   (-1, 1) .

 

-1  <  1/x  < 1

 

By looking at a graph,  here:  https://www.desmos.com/calculator/tswnd5ukqx  ,

 

we can see that all  x  values  >  1  cause  1/x  to be within the desired range,

 

and all  x  values  <  -1  cause  1/x  to be within the desired range.

 

So the domain of  g(x)  is  (-∞, -1) U (1, ∞) .

 

 

d)     k(x)  =  f( √x )

 

The domain of  f  is  (-1, 1) ,  so   √x   has to be in the interval   (-1, 1) .

 

-1  <  √x  <  1       To solve this inequality, let's split it into two parts.

 

-1  <  √x               This is true for all non-negative  x  values, so...

x   ≥  0

                   and

√x  <  1

  x  <  1

 

We can check this with a graph:  https://www.desmos.com/calculator/wqoa050mj0

 

So the domain of  k(x)  is  [0, 1) .

 

 

e)     \(l(x)=f(\frac{x+1}{x-1})\)

 

The domain of  f  is  (-1, 1) ,  so   \(\frac{x+1}{x-1}\)   has to be in the interval   (-1, 1) .

 

-1  < \(\frac{x+1}{x-1}\)  <  1

 

The easiest way to solve this inequality is, again, with a graph.

 

So the  x  values that cause  \(\frac{x+1}{x-1}\)  to be in the desired range are those  <  0 .

 

So the domain of  l(x)  is  (-∞, 0)

 
hectictar  Dec 7, 2017
Sort: 

2+0 Answers

 #1
avatar+497 
0

I really need help on these questions. Any help is appreciated!

 
michaelcai  Dec 7, 2017
 #2
avatar+5552 
+3
Best Answer

a)     g(x)  =  f(x + 1)

 

The domain of  f  is  (-1, 1) ,  so   x + 1   has to be in the interval   (-1, 1) .

 

-1  <  x + 1  <  1      Subtract  1  from each part of the inequality.

-2  <  x  <  0

 

So the domain of  g(x)  is  (-2, 0) .

 

 

b)     h(x)  =  f(x) + 1

 

The domain of  f  is  (-1, 1) ,  so   x   has to be in the interval   (-1, 1) .

 

So the domain of  g(x)  is  (-1, 1) .

 

 

c)     j(x)  =  f( 1/x )

 

The domain of  f  is  (-1, 1) ,  so   1/x   has to be in the interval   (-1, 1) .

 

-1  <  1/x  < 1

 

By looking at a graph,  here:  https://www.desmos.com/calculator/tswnd5ukqx  ,

 

we can see that all  x  values  >  1  cause  1/x  to be within the desired range,

 

and all  x  values  <  -1  cause  1/x  to be within the desired range.

 

So the domain of  g(x)  is  (-∞, -1) U (1, ∞) .

 

 

d)     k(x)  =  f( √x )

 

The domain of  f  is  (-1, 1) ,  so   √x   has to be in the interval   (-1, 1) .

 

-1  <  √x  <  1       To solve this inequality, let's split it into two parts.

 

-1  <  √x               This is true for all non-negative  x  values, so...

x   ≥  0

                   and

√x  <  1

  x  <  1

 

We can check this with a graph:  https://www.desmos.com/calculator/wqoa050mj0

 

So the domain of  k(x)  is  [0, 1) .

 

 

e)     \(l(x)=f(\frac{x+1}{x-1})\)

 

The domain of  f  is  (-1, 1) ,  so   \(\frac{x+1}{x-1}\)   has to be in the interval   (-1, 1) .

 

-1  < \(\frac{x+1}{x-1}\)  <  1

 

The easiest way to solve this inequality is, again, with a graph.

 

So the  x  values that cause  \(\frac{x+1}{x-1}\)  to be in the desired range are those  <  0 .

 

So the domain of  l(x)  is  (-∞, 0)

 
hectictar  Dec 7, 2017

14 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details