+0

# algebra

+1
218
2

I'm sorry, but two more questions please:)

sin(x) - sin(x) * cos^2(x)

sin^4(x) - cos^4(x) divided by sin^2(x) - cos^2(x)

Guest Mar 29, 2017
Sort:

#1
+79911
+2

sin(x) - sin(x) * cos^2(x)  =

sin x  - sin x  *  ( 1 - sin^2 x)  =

sinx  -  sin x  + sin^3 x  =

sin^3 x

sin^4(x) - cos^4(x) divided by sin^2(x) - cos^2(x)

Factor   sin^4 x - cos^4x   as

[sin^2 x + cos ^2 x] [ sin^2 x - cos^2 x ]  /  [sin^2 x - cos^2 x ]   =

sin^2 x  + cos^2 x   =

1

CPhill  Mar 29, 2017
#2
+91263
+2

sin(x) - sin(x) * cos^2(x)

$$sin(x) - sin(x) * cos^2(x)\\ =sin(x) (1- cos^2(x))\\ =sin(x) sin^2(x)\\ =sin^3(x)\\$$

sin^4(x) - cos^4(x) divided by sin^2(x) - cos^2(x)

$$\frac{sin^4(x) - cos^4(x) }{sin^2(x) - cos^2(x)}\\ =\frac{(sin^2(x) - cos^2(x))(sin^2(x) + cos^2(x)) }{sin^2(x) - cos^2(x)}\\ =\frac{sin^2(x) - cos^2(x)}{sin^2(x) - cos^2(x)}\\~\\ =1 \qquad where \;\;\; x\ne \frac{\pi+2n\pi}{4} \;\;\;n\in Z$$

Melody  Mar 29, 2017

### 15 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details