+0

# Algebra

0
65
1

Let $$f(x) = \frac{x^2}{x^2 - 1}.$$Find the largest integer $n$ so that $f(2) \cdot f(3) \cdot f(4) \cdots f(n-1) \cdot f(n) < 1.98.$

$$Let \;\;\;f(x) = \frac{x^2}{x^2 - 1}.\;\;\;\\\text{Find the largest integer n so that }\\ f(2) \cdot f(3) \cdot f(4) \cdots f(n-1) \cdot f(n) < 1.98.$$

(I have just written the question properly)

Guest Sep 23, 2017
edited by Melody  Sep 24, 2017
Sort:

#1
+76929
+2

Note that 1.98  can be written as  1 + 98 / 100  = 198/100  = 99/50

Also  note that

x^2           =           x * x

______             __________

x^2 - 1             (x - 1) ( x + 1)

So we can write

2*2        3*3        4* 4                 (n - 1) ( n -1)       n *  n

____ *  _____  * _____ *  ....... *  ___________  * ___________ <  99 / 50

1 * 3      2 * 4      3 * 5                 (n - 2) ( n)           (n - 1) (n + 1)

Note that all the terms in red will be "cancelled" in the process and we will be left with

2 n     <    99

____       ___                 multiply both sides by (1/2)   and we have that

(n + 1)      50

n           <          99

______              ___

(n + 1)                100

And its obvious that the largest integer is   n  =  98

CPhill  Sep 24, 2017

### 31 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details