+0  
 
0
190
2
avatar

(csc(x)*cos(x)) divided by tan(x)+cot(x)

 

thank you!

Guest Mar 29, 2017
Sort: 

2+0 Answers

 #1
avatar+79654 
+3

(csc(x)*cos(x)) divided by tan(x)+cot(x)  =

 

[1/sinx) *cos(x)]  /  [ sinx/cosx  + cosx/sinx]  =

 

[  cot x  ]  /    [ (sin^2 x  + cos^2 x )  /  sinx cosx ] =

 

[ cot x ] / [ 1 / sinx cosx ] =

 

[ cot x] [ sin x cos x ]  =

 

[cosx / sin x ] [sin x cos x ]  =

 

cos^2 (x)

 

 

 

cool cool cool

CPhill  Mar 29, 2017
 #2
avatar+5541 
+3

\(\frac{\csc x\cos x}{\tan x + \cot x} \\~\\ =\frac{\frac{1}{\sin x}*\cos x}{\frac{\sin x}{\cos x} + \frac{\cos x}{\sin x}} \\~\\ =\frac{\cos x}{\sin x}*\frac{1}{\frac{\sin x}{\cos x} + \frac{\cos x}{\sin x}} \\~\\ =\frac{\cos x}{\sin x*\frac{\sin x}{\cos x} + \sin x* \frac{\cos x}{\sin x}} \\~\\ =\frac{\cos x}{\frac{\sin^2 x}{\cos x} + \cos x} \\~\\ =\frac{\cos x}{\frac{\sin^2 x}{\cos x} + \frac{\cos^2 x}{\cos x}} \\~\\ =\frac{\cos x}{\frac{\sin^2 x+\cos^2 x}{\cos x}} \\~\\ =\frac{\cos x}{\frac{1}{\cos x}} \\~\\ = \cos^2 x\)

 

:))

hectictar  Mar 29, 2017

9 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details