+0

# An engineer estimates the angle of elevation

0
186
1

An engineer estimates the angle of elevation to the top of the building to be 50°. After moving 1.5 meters further away, the angle of elevation was 40°. How high is the top of the building?

Guest May 5, 2017
Sort:

#1
+18767
+3

An engineer estimates the angle of elevation to the top of the building to be 50°.
After moving 1.5 meters further away, the angle of elevation was 40°.
How high is the top of the building?

$$\begin{array}{|lrcll|} \hline (1) & \tan(50^{\circ}) &=& \frac{h}{x} \\ & x &=& \frac{h}{\tan(50^{\circ})} \\\\ (2) & \tan(40^{\circ}) &=& \frac{h}{1.5+x} \\ & \tan(40^{\circ}) &=& \frac{h}{1.5+\frac{h}{\tan(50^{\circ})}} \\ & \tan(40^{\circ})\cdot \left( 1.5+\frac{h}{\tan(50^{\circ})}\right) &=& h \\ & 1.5\cdot \tan(40^{\circ}) + h\cdot \frac{ \tan(40^{\circ}) } { \tan(50^{\circ}) } &=& h \\ & h-h\cdot \frac{ \tan(40^{\circ}) } { \tan(50^{\circ}) } &=& 1.5\cdot \tan(40^{\circ}) \\ & h\cdot \left(1- \frac{ \tan(40^{\circ} ) } { \tan(50^{\circ}) } \right) &=& 1.5\cdot \tan(40^{\circ}) \\ & h\cdot \left( \frac{ \tan(50^{\circ})-\tan(40^{\circ} ) } { \tan(50^{\circ}) } \right) &=& 1.5\cdot \tan(40^{\circ}) \\ & h &=& 1.5\cdot \left( \frac{ \tan(50^{\circ})\cdot\tan(40^{\circ}) }{ \tan(50^{\circ})-\tan(40^{\circ} ) } \right) \\ & h &=& 1.5\cdot \left( \frac{ 1.19175359259\cdot 0.83909963118}{ 1.19175359259-0.83909963118 ) } \right) \\ & h &=& 1.5\cdot \left( \frac{ 1 }{ 0.35265396142 } \right) \\ & h &=& 1.5\cdot 2.83564090981 \\ & h &=& 4.25346136471\ m \\ \hline \end{array}$$

The top of the building is 4.25 m high.

heureka  May 5, 2017
edited by heureka  May 5, 2017

### 15 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details