+0  
 
+5
88
2
avatar+302 

4. The angle of elevation of the Top Q of a vertical tower PQ from a point X on the ground is 60°. From a point Y 40m vertically above X the angle of elevation of the top Q of tower is 45°. Find the height of the tower PQ and the distance PX(use root 3= 1.73)

SARAHann  Mar 10, 2017
Sort: 

2+0 Answers

 #1
avatar+18348 
0

4. The angle of elevation of the Top Q of a vertical tower PQ from a point X on the ground is 60°. From a point Y 40m vertically above X the angle of elevation of the top Q of tower is 45°. Find the height of the tower PQ and the distance PX(use root 3= 1.73)

 

Let x = PQ (height )
Let y = PX (distance)

 

\(\begin{array}{|rcll|} \hline \tan(60^{\circ}) = \frac{x}{y} &=& \sqrt{3} \qquad & | \qquad \tan(60^{\circ}) = \sqrt{3} \\ y &=& \frac{x}{\sqrt{3}} \\\\ \tan(45^{\circ}) = \frac{x-40}{y} &=& 1 \qquad & | \qquad \tan(45^{\circ}) = 1 \\ x-40 &=& y \\\\ x-40 &=& \frac{x}{\sqrt{3}} \\ \dots \\ x &=& \frac{ 40\cdot \sqrt{3} } {\sqrt{3}-1} \qquad & | \qquad \sqrt{3} = 1.73 \\ &=& \frac{ 40\cdot 1.73 } {1.73-1} \\ &=& \frac{ 69.2 } {0.73} \\ \mathbf{x} & \mathbf{=} & \mathbf{94.79\ m} \\\\ y &=& \frac{x}{\sqrt{3}} \\ &=& \frac{94.79}{\sqrt{3}} \qquad & | \qquad \sqrt{3} = 1.73 \\ &=& \frac{94.79}{1.73} \\ \mathbf{y} & \mathbf{=} & \mathbf{54.79\ m} \\\\ \hline \end{array} \)

 

laugh

heureka  Mar 10, 2017
 #2
avatar+302 
0

Tysm fr the answer!!😊😊

SARAHann  Mar 10, 2017

12 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details