+0

What is the integral of ^^?

0
214
1

$${\frac{{\mathtt{4}}{\mathtt{\,\times\,}}{pi}{\left({\mathtt{s}}\right)}}{{\left({\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\mathtt{s}}\right)}^{{\mathtt{3}}}}}{\mathtt{\,\times\,}}{\mathtt{ds}}$$

What is the integral of ^^?

Guest Oct 18, 2014

#1
+80935
+10

Let s+1 = u

Then s = u -1

And ds = 1 du

So we have

4pi∫(u - 1)/u3 du =

4pi [∫1/u-2 du - ∫ u-3 du ] + C =

4pi [ (-1)u-1 - (-1/2)u-2 ]  + C =

4pi [ 1/(2u2) - 1/u ] + C =

2pi [ 1- 2u]/ u2 + C =   [back substitute ....( u = s+ 1) ]

2pi [ 1 -2(s + 1) ]/ (s + 1)2 + C

2pi [ -(2s + 1) ] / (s + 1)2 + C =

-2pi (2s + 1) / (s + 1)2 + C

CPhill  Oct 18, 2014
Sort:

#1
+80935
+10

Let s+1 = u

Then s = u -1

And ds = 1 du

So we have

4pi∫(u - 1)/u3 du =

4pi [∫1/u-2 du - ∫ u-3 du ] + C =

4pi [ (-1)u-1 - (-1/2)u-2 ]  + C =

4pi [ 1/(2u2) - 1/u ] + C =

2pi [ 1- 2u]/ u2 + C =   [back substitute ....( u = s+ 1) ]

2pi [ 1 -2(s + 1) ]/ (s + 1)2 + C

2pi [ -(2s + 1) ] / (s + 1)2 + C =

-2pi (2s + 1) / (s + 1)2 + C

CPhill  Oct 18, 2014

16 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details