+0

# Can someone solve this?

0
97
4

xy+4x=2880

xy-12y=2160

x and y in both equations is the same

Guest Feb 20, 2017

#4
+18625
+20

xy+4x=2880

xy-12y=2160

x and y in both equations is the same

$$\begin{array}{|lrcll|} \hline (1) & xy+4x &=& 2880 \\ (2) & xy-12y &=& 2160 \\ \hline \\ (1)-(2): & xy+4x -(xy-12y)&=& 2880-2160 \\ & xy+4x -xy+12y &=& 720 \\ & 4x+12y &=& 720 \quad & | \quad : 4 \\ & x+3y &=& 180 \\ (3) & x &=& 180-3y \\ \hline \end{array}$$

(3) in (2):

$$\begin{array}{|rcll|} \hline (2) & xy-12y &=& 2160 \\ & y\cdot (x-12) &=& 2160 \quad & | \quad x = 180-3y \\ & y\cdot (180-3y-12) &=& 2160 \\ & 180y-3y^2-12y &=& 2160 \\ & -3y^2+168y &=& 2160 \quad & | \quad : (-3) \\ & y^2-56y &=&-720 \\ & y^2-56y +720 &=& 0 \\ & (y-36)(y-20) &=& 0 \\\\ & y_1 = 36 &\text{or}& \quad y_2 = 20 \\ \hline \end{array}$$

$$\begin{array}{|rcll|} \hline (3) & x &=& 180-3y \\ & x_1 &=& 180-3\cdot 36 \\ & x_1 &=& 72 \\\\ & x_2 &=& 180-3\cdot 20 \\ & x_2 &=& 120 \\ \hline \end{array}$$

Solutions: (72,36) and (120,20)

heureka  Feb 21, 2017
Sort:

#1
0

xy+4x=2880

xy-12y=2160

x = 72 and y = 36

x = 120 and y = 20

Guest Feb 20, 2017
#3
+77073
0

xy + 4x= 2880    →  x (y + 4)  = 2880 →  x = 2880/ (y + 4)    (1)

xy - 12y= 2160     (2)

Sub (1)  into (2)

[2880/ (y + 4)] y - 12y  = 2160    multiply through by ( y + 4)

2880y - 12y( y + 4) = 2160( y + 4)    simplify

2880y - 12y^2 - 48y = 2160y + 8640

12y^2 - 672 y  + 8640  = 0

y^2 - 56y + 720  = 0     factor

( y - 36) (y - 20)  = 0

Set each factor to 0 and y = 36  or y  = 20

When y  = 36,  x = 2880/[36 + 4]  = 2880/40 =  72

When y  = 20,  x = 2880/[20 + 4]  = 2880/24 =  120

Solutions    (72, 36)  and (120, 20 )

CPhill  Feb 20, 2017
#4
+18625
+20

xy+4x=2880

xy-12y=2160

x and y in both equations is the same

$$\begin{array}{|lrcll|} \hline (1) & xy+4x &=& 2880 \\ (2) & xy-12y &=& 2160 \\ \hline \\ (1)-(2): & xy+4x -(xy-12y)&=& 2880-2160 \\ & xy+4x -xy+12y &=& 720 \\ & 4x+12y &=& 720 \quad & | \quad : 4 \\ & x+3y &=& 180 \\ (3) & x &=& 180-3y \\ \hline \end{array}$$

(3) in (2):

$$\begin{array}{|rcll|} \hline (2) & xy-12y &=& 2160 \\ & y\cdot (x-12) &=& 2160 \quad & | \quad x = 180-3y \\ & y\cdot (180-3y-12) &=& 2160 \\ & 180y-3y^2-12y &=& 2160 \\ & -3y^2+168y &=& 2160 \quad & | \quad : (-3) \\ & y^2-56y &=&-720 \\ & y^2-56y +720 &=& 0 \\ & (y-36)(y-20) &=& 0 \\\\ & y_1 = 36 &\text{or}& \quad y_2 = 20 \\ \hline \end{array}$$

$$\begin{array}{|rcll|} \hline (3) & x &=& 180-3y \\ & x_1 &=& 180-3\cdot 36 \\ & x_1 &=& 72 \\\\ & x_2 &=& 180-3\cdot 20 \\ & x_2 &=& 120 \\ \hline \end{array}$$

Solutions: (72,36) and (120,20)

heureka  Feb 21, 2017

### 2 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details