+0  
 
0
55
1
avatar

Find the Cartesian equation of the graph whose parametric equations are x=3cos(theta)-1 and y =4sin(theta)+1.

Guest Aug 14, 2017
Sort: 

1+0 Answers

 #1
avatar+18564 
+1

Find the Cartesian equation of the graph

whose parametric equations are

x=3cos(theta)-1 and

y =4sin(theta)+1.

 

\(\begin{array}{|rcll|} \hline & x &=& 3\cos(\theta)-1 \\ (1) & \frac{x+1}{3} &=& \cos(\theta) \\\\ & y &=& 4\sin(\theta)+1 \\ (2) & \frac{y-1}{4} &=& \sin(\theta) \\\\ \hline &&& \cos^2(\theta) + \sin^2(\theta) = 1 \\ & \left( \frac{x+1}{3} \right)^2 + \left( \frac{y-1}{4} \right)^2 &=& 1 \\\\ & \mathbf{ \frac{(x+1)^2}{3^2} + \frac{(y-1)^2}{4^2} } & \mathbf{=} & \mathbf{ 1 } & | \quad \text{ ellipse with center } (-1,1) \\ & && & | \quad \text{ and } a = 3 \text{ and } b=4 \\ \hline \end{array}\)

 

laugh

heureka  Aug 15, 2017

17 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details