+0

# Cartesian from parametric

0
125
1

Find the Cartesian equation of the graph whose parametric equations are x=3cos(theta)-1 and y =4sin(theta)+1.

Guest Aug 14, 2017
Sort:

#1
+18827
+1

Find the Cartesian equation of the graph

whose parametric equations are

x=3cos(theta)-1 and

y =4sin(theta)+1.

$$\begin{array}{|rcll|} \hline & x &=& 3\cos(\theta)-1 \\ (1) & \frac{x+1}{3} &=& \cos(\theta) \\\\ & y &=& 4\sin(\theta)+1 \\ (2) & \frac{y-1}{4} &=& \sin(\theta) \\\\ \hline &&& \cos^2(\theta) + \sin^2(\theta) = 1 \\ & \left( \frac{x+1}{3} \right)^2 + \left( \frac{y-1}{4} \right)^2 &=& 1 \\\\ & \mathbf{ \frac{(x+1)^2}{3^2} + \frac{(y-1)^2}{4^2} } & \mathbf{=} & \mathbf{ 1 } & | \quad \text{ ellipse with center } (-1,1) \\ & && & | \quad \text{ and } a = 3 \text{ and } b=4 \\ \hline \end{array}$$

heureka  Aug 15, 2017

### 28 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details