+0  
 
0
32
1
avatar+139 

Chords $\overline{WY}$ and $\overline{XZ}$ of a circle are perpendicular. If $XV = 4$, $WV = 3$, and $VZ = 9$, then find $YZ$.

AdminMod2  Sep 9, 2017
Sort: 

1+0 Answers

 #1
avatar+76094 
+1

 

By the theory of intersecting chords.....

 

XV * ZV  =  WV * YV     ....so....

 

4 * 9  =  3 * YV       divide both sides by 3

 

[ 4 * 9 ]  / 3  =   YV

 

36 / 3  =  YV   =  12

 

And since the chords are perpendicular, by the Pythagorean Theorem.......

 

ZV^2 + YV^2  = YZ^2

 

9^2  +  12^2 = YZ^2

 

225   =  YZ^2        take the square root of both sides

 

15  =  YZ 

 

 

cool cool cool

CPhill  Sep 9, 2017

20 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details