+0  
 
0
42
2
avatar+311 

What is the area of the circle defined by \(x^2-6x +y^2-14y +33=0\) that lies beneath the line y=7 ?

ant101  Jan 6, 2018
Sort: 

2+0 Answers

 #1
avatar+80874 
+2

Rearrange as

 

x^2 -6y +y^2 - 14y   =  -33      complete the square on x and y

 

x^2  - 6y + 9    +  y^2 - 14y  + 49   =    -33 + 9 + 49

 

(x - 3)^2  + (y  - 7)^2  =    25

 

This is a circle centered at  (  3, 7)  with a radius of 5

 

The part lying below y  = 7 is the  area of 1/2 of this circle  =

 

pi * 5^2  / 2   =

 

(25/2)pi ≈  39.3  units^2

 

 

cool cool cool

CPhill  Jan 6, 2018
 #2
avatar+311 
0

check again

ant101  Jan 6, 2018

14 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details