+0  
 
0
81
1
avatar

Why is i to the power of i (i^i) equal to .207879...

Guest Mar 23, 2017
Sort: 

1+0 Answers

 #1
avatar+6765 
0

\(\text{Let }x=i^i\\ \ln x = i \ln i\)

Now we need to find the value of ln(i).

 

\(e^{i\pi} = -1\\ \ln(-1)=i\pi\\ \ln i = \dfrac{1}{2}\ln(-1)= \dfrac{i\pi}{2}\)

Substitute the result into the equation:

\(\ln x = i\left(\dfrac{i\pi}{2}\right)\\ \quad \;\;=-\dfrac{\pi}{2}\\ e^{\ln x}=e^{-\pi /2}\\ x = e^{-\pi/2}\\ \therefore i^i = e^{-\pi /2}\)

e^(-pi /2) approximately equals 0.207879.

MaxWong  Mar 23, 2017

9 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details