+0

# Cos (a+b) sin a=-3/5 sin b=-5/13 a & b in Q3

0
456
2

Cos (a+b) sin a=-3/5 sin b=-5/13 a & b in Q3

Guest Jul 22, 2014

#1
+91432
+8

Sin(a) and sin(b) are both negative which means that a and b have to be in the 3rd or 4th quadrant.

$$cos(a+b)\\\\ =cos(a)cos(b)-sin(a)sin(b)\\\\ =\pm\frac{4}{5}\times \pm \frac{12}{13}- \;\;\frac{-3}{5}\times \frac{-5}{13}\\\\ =\pm\frac{48}{65}- \;\;\frac{15}{65}\\\\ =\frac{-15-48}{65}\;\;or\;\;\frac{-15+48}{65}\\\\ =\frac{-63}{65}\;\;or\;\;\frac{33}{65}\\\\$$

Melody  Jul 23, 2014
Sort:

#1
+91432
+8

Sin(a) and sin(b) are both negative which means that a and b have to be in the 3rd or 4th quadrant.

$$cos(a+b)\\\\ =cos(a)cos(b)-sin(a)sin(b)\\\\ =\pm\frac{4}{5}\times \pm \frac{12}{13}- \;\;\frac{-3}{5}\times \frac{-5}{13}\\\\ =\pm\frac{48}{65}- \;\;\frac{15}{65}\\\\ =\frac{-15-48}{65}\;\;or\;\;\frac{-15+48}{65}\\\\ =\frac{-63}{65}\;\;or\;\;\frac{33}{65}\\\\$$

Melody  Jul 23, 2014
#2
+18827
+5

Cos (a+b) sin a=-3/5 sin b=-5/13 a & b in Q3  ?

$$\boxed{\cos(a+b)=\;?} \quad \sin{(a)} =-{3\over5} \qquad \sin {(b)}=-{5\over13}$$

$$\cos{(a+b)}=\cos{(a)}*\cos(b)-sin{(a)}*\sin{(b)}$$

cos(a)=?   and   cos(b)=?

$$\textstyle{ \cos{(a)}=\sqrt{1-\sin^2{(a)}}= \sqrt{1-({3\over5})^2}= {\sqrt{5^2-3^2}\over5}={\sqrt{16}\over5}={\pm4\over5}=\pm{4\over5} }$$

$$\textstyle{ \cos{(b)}=\sqrt{1-\sin^2{(b)}}= \sqrt{1-({5\over13})^2}= {\sqrt{13^2-5^2}\over13}={\sqrt{144}\over13}={\pm12\over13}=\pm{12\over13} }$$

$$\cos{(a+b)}=\pm ({4\over5}) \times ({12\over13}) - (-{3\over5}) \times (-{5\over13})$$

$$\cos{(a+b)}=\pm ({4\over5}) \times ({12\over13}) - ({3\over5}) \times ({5\over13})$$

$$\cos{(a+b)}=({\pm(4*12)\over5*13}) - ({3*5\over5*13})$$

$$\cos{(a+b)}={\pm(4*12)-3*5\over5*13}$$

$$\cos{(a+b)}={\pm48-15\over65}$$

$$\text{1.) }\cos{(a+b)}={48-15\over65}={33\over65}=0.50769230769$$

$$\text{2.) }\cos{(a+b)}={-48-15\over65}=-{63\over65}=-0.96923076923$$

heureka  Jul 23, 2014

### 20 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details