+0

determining the sum of this arithmetic series?

0
49
3

5 + 8 + 11 + ... + 53

here's what i did:

$$S_{53} = {53 [2(5) + (53 - 1)3] \over 2}$$

$$S_{53} = {53 (166) \over 2}$$

$$S_{53} = 4399$$

the answer is 493, what did i do wrong?

Guest Nov 1, 2017

#2
+1

N =((L - F) / D) + 1, where N=Number of terms, L=Last term, F=First term, D=Common difference

N =((53 - 5) / 3) + 1

N = 17 Number of terms.

S =(F+L) / 2  x  N  , where F=First term, L=Last term. N=Number of terms, S=The Sum.

S =(53+5)/2  x  17

S =58/2  x  17

S =29   x  17 =493

Guest Nov 1, 2017
Sort:

#1
+78643
+1

Let's arrange the series in a slightly different manner

53 +  [ 50 + 5 ]  +  [ 47 + 8 ] +  [ 44 + 11]  , etc.

So....we have some "n"  pairs each summing to 55  plus the last term

Finding the number of pairs is a little tricky....but we can use this "formula"

n  =  (  [ last even term - first term ] / 3   + 1 )  / 2

So....the number of pairs is

([ 50 - 5 ] / 3  +   1)  / 2  =

(45/ 3  + 1) / 2  =

[15 + 1 ] / 2 =

16 / 2  =

8

So......the sum is    53  + (  8 * 55 )  =    493

CPhill  Nov 1, 2017
#2
+1

N =((L - F) / D) + 1, where N=Number of terms, L=Last term, F=First term, D=Common difference

N =((53 - 5) / 3) + 1

N = 17 Number of terms.

S =(F+L) / 2  x  N  , where F=First term, L=Last term. N=Number of terms, S=The Sum.

S =(53+5)/2  x  17

S =58/2  x  17

S =29   x  17 =493

Guest Nov 1, 2017
#3
+18712
+1

determining the sum of this arithmetic series?

5 + 8 + 11 + ... + 53

arithmetic series:

$$\begin{array}{lrrrrrrrrrrrrrrrrr} & {\color{red}d_0 = 5} && 8 && 11 && 14 && 17 && \cdots && 53 \\ \text{1. Difference } && {\color{red}d_1 = 3} && 3 && 3 && 3 && \cdots && 3 \\ \end{array}$$

Formula:

$$\begin{array}{|rcl|} \hline a_n &=& \binom{n-1}{0}\cdot {\color{red}d_0 } + \binom{n-1}{1}\cdot {\color{red}d_1 } \\ s &=& \binom{n}{1}\cdot {\color{red}d_0 } + \binom{n}{2}\cdot {\color{red}d_1 } \\ \hline \end{array}$$

n = ?

$$\begin{array}{|rcl|} \hline a_n &=& \binom{n-1}{0}\cdot {\color{red}d_0 } + \binom{n-1}{1}\cdot {\color{red}d_1 } \quad & | \quad a_n = 53 \quad {\color{red}d_0 } = 5 \quad {\color{red}d_1 } = 3 \\\\ 53 &=& \binom{n-1}{0}\cdot {\color{red}5 } + \binom{n-1}{1}\cdot {\color{red}3 } \\ 53 &=& 5+(n-1)\cdot 3 \\ 53 &=& 2 +3n \quad & | \quad -2\\ 51 &=& 3n \quad & | \quad :3 \\ 17 &=& n \\ \mathbf{n} &\mathbf{=}& \mathbf{17} \\ \hline \end{array}$$

sum (s) = ?

$$\begin{array}{|rcl|} \hline s &=& \binom{n}{1}\cdot {\color{red}d_0 } + \binom{n}{2}\cdot {\color{red}d_1 } \quad & | \quad n = 17 \quad {\color{red}d_0 } = 5 \quad {\color{red}d_1 } = 3 \\\\ s &=& \binom{17}{1}\cdot {\color{red}5 } + \binom{17}{2}\cdot {\color{red}3 } \\ s &=& 17\cdot 5 + \frac{17}{2} \cdot \frac{16}{1}\cdot 3 \\ s &=& 17\cdot \left(5+\frac{16}{2}\cdot 3 \right) \\ s &=& 17\cdot(5+ 24) \\ s &=& 17\cdot 29 \\ \mathbf{s} &\mathbf{=}& \mathbf{493} \\ \hline \end{array}$$

The sum is 493

heureka  Nov 1, 2017

6 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details