+0

# Drag and drop a statement or reason to each box to complete the proof.

0
306
3
+618

Drag and drop a statement or reason to each box to complete the proof.

Given: PQ¯¯¯¯¯≅PR¯¯¯¯¯

Prove: ∠Q≅∠R

Statement                                                                             Reason

PQ¯¯¯¯¯ ≅ PR¯¯¯¯¯                                                                   Given

Draw PM¯¯¯¯¯¯ so that M is the midpoint of QR¯¯¯¯¯ .             Two points determine a line.

(                                    )                                                                Definition of midpoint

PM¯¯¯¯¯¯ ≅ PM¯¯¯¯¯¯                                                                (                                )

(                                    )                                                                 (                                 )

∠Q ≅ ∠R                                                                                      (                                  )

OPTIONS: CPCTC, QM¯¯¯¯¯≅ RM¯¯¯¯¯¯, △PQM ≅△ PRM , Reflexive Property of Congruence, SSS Congruence Postulate, HL Congruence Theorem

AngelRay  Nov 14, 2017
Sort:

#1
+1602
+1

 $$\overline{QM}\cong\overline{RM}$$ Definition of midpoint $$\overline{PM}\cong\overline{PM}$$ Reflexive Property of Congruence $$\triangle PQM\cong\triangle PRM$$ Side-Side-Side Triangle Congruence Postulate
TheXSquaredFactor  Nov 14, 2017
#2
+507
+2

Simple;

PQR is an isosceles triangle, and Q and P are reflected over the one line of symmetry, which happens to be PM if M is the midpoint of PR.

helperid1839321  Nov 14, 2017
#3
+1602
+1

Yes, you are right that the isosceles triangle theorem would end this problem in one step.

TheXSquaredFactor  Nov 17, 2017

### 6 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details