+0

# Drag and drop a statement or reason to each box to complete the proof.

+1
410
1
+618

Drag and drop a statement or reason to each box to complete the proof.

Given: parallelogram MNPQ

Prove: ∠N≅∠Q

Statement                                                                                        Reason

parallelogram MNPQ                                                                       Given

MN¯¯¯¯¯¯¯ ≅ QP¯¯¯¯¯      ( <-- these 2 are together.)   (                                    )

MQ¯¯¯¯¯¯   ≅ NP¯¯¯¯¯¯

(                              )                                                         (                                    )

△MQP ≅ △PNM                                                               (                                     )

(                              )                                                                        CPCTC

OPTIONS:

AngelRay  Nov 14, 2017

#1
+1602
+2

 $$\overline{MN}\cong\overline{QP}$$ $$\overline{MQ}\cong\overline{NP}$$ Property of a Parallelogram (If a quadrilateral is a parallelogram, then its opposite sides are congruent) $$\overline{MP}\cong\overline{MP}$$ Reflexive Property of Congruence $$\triangle MQP\cong\triangle PNM$$ Side-Side-Side Triangle Congruence Theorem
TheXSquaredFactor  Nov 14, 2017
edited by TheXSquaredFactor  Nov 14, 2017
Sort:

#1
+1602
+2
 $$\overline{MN}\cong\overline{QP}$$ $$\overline{MQ}\cong\overline{NP}$$ Property of a Parallelogram (If a quadrilateral is a parallelogram, then its opposite sides are congruent) $$\overline{MP}\cong\overline{MP}$$ Reflexive Property of Congruence $$\triangle MQP\cong\triangle PNM$$ Side-Side-Side Triangle Congruence Theorem