+0  
 
+1
50
2
avatar

what would (3)log to the base 4/9 of (27/8)^(1/4)

Guest Aug 24, 2017
Sort: 

2+0 Answers

 #1
avatar+90192 
+2

Let

 

\(y=log_{(4/9)}(27/8)^{(3/4)}\\ y= \frac{log(27/8)^{(3/4)}}{log(4/9)}\\ y= \frac{(3/4)log(27/8)}{log(2/3)^2}\\ y= \frac{(3/4)log(3/2)^3}{log(2/3)^2}\\ y= \frac{(9/4)log(3/2)}{2log(2/3)}\\ y= \frac{9log(3/2)}{8log(2/3)}\\ y= \frac{9log(3/2)}{8log(3/2)^{-1}}\\ y= \frac{9log(3/2)}{-8log(3/2)}\\ y=\frac{-9}{8} \)

Melody  Aug 25, 2017
 #2
avatar+90192 
+2

OR

 

\(log_{(4/9)}(\frac{27}{8})^{3/4}\\ =log_{(4/9)}(\frac{3}{2})^{9/4}\\ =log_{(4/9)}(\frac{2}{3})^{-9/4}\\ =log_{(4/9)}(\frac{4}{9})^{-9/8}\\ =\frac{-9}{8}\)

Melody  Aug 25, 2017

12 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details