+0  
 
0
59
3
avatar

Factor the polynomial function over the complex number.

 

f(x) = x^4 + 9x^3 + 15x^2 + 9x + 14

Guest Oct 27, 2017
Sort: 

3+0 Answers

 #1
avatar+90999 
+2

Factor the polynomial function over the complex number.

 

f(x) = x^4 + 9x^3 + 15x^2 + 9x + 14

 

any roots must be factors of 14    and when they are substituted they must make the function =0

By substitution I found that x=-7 and x=-2 are both roots of this function.

So two of the factors are (x+7) and (x+2)

(x+7)(x+2)=x^2+9x+14

 

I divided f(x) by x^2+9x+14 and found the answer to be (x^2+1)

 

so

\(f(x) = x^4 + 9x^3 + 15x^2 + 9x + 14\\ f(x) = (x+7)(x+2)(x^2+1)\\ f(x) = (x+7)(x+2)(x+i))(x-i)\\\)

Melody  Oct 27, 2017
 #2
avatar+8826 
+1

Factor the polynomial function over the complex number.

f(x) = x^4 + 9x^3 + 15x^2 + 9x + 14

laugh

Omi67  Oct 27, 2017
 #3
avatar+78590 
+1

 x^4 + 9x^3 + 15x^2 + 9x + 14

 

Split  15x^2  into  14x^2  +  x^2

 

 x^4 + 9x^3 + 14x^2 + x^2 + 9x + 14     factor as

 

x^2  [x^2 + 9x + 14 ]  +  1 [ x^2 + 9x + 14 ]   take out GCF

 

[ x^2 + 1 ] [ x^2 + 9x + 14 ]

 

[ x^2 + 1 ] [  x + 7 ] [ x + 2 ]

 

 

cool cool cool

CPhill  Oct 27, 2017

21 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details