+0

# fdgdfgzdf

0
87
2

what adds to -1 but multiplies to -60

Guest Mar 18, 2017

#2
+77081
+5

x + y  = -1      →  y = -1 - x     (1)

x*y   = - 60    (2)

Put (1) into (2)

x (-1 - x)  = -60

-x - x^2  = -60   multiply through by -1  and rearrange

x^2 + x - 60   =   0     solving for x   we have

x =  [ - 1 + sqrt(241)] / 2    and y   =  [ - 1 - sqrt(241)] / 2        or

x = [ - 1 - sqrt(241)] / 2     and  y  =  [ - 1 + sqrt(241)] / 2

CPhill  Mar 18, 2017
Sort:

#1
+4749
+6

Technically, the two numbers are:

$$\frac{-1+\sqrt{241}}{2} \text{ . . .and. . . } \frac{-1-\sqrt{241}}{2}$$

I found just it by using the quadratic formula on this equation:

x2 - x - 60 = 0

There are no integers that add to -1 but multiply to -60.

Does your problem look like this:

x2 - x - 60 = 0

Or is there a number in front of the x2  ?

hectictar  Mar 18, 2017
edited by hectictar  Mar 18, 2017
#2
+77081
+5

x + y  = -1      →  y = -1 - x     (1)

x*y   = - 60    (2)

Put (1) into (2)

x (-1 - x)  = -60

-x - x^2  = -60   multiply through by -1  and rearrange

x^2 + x - 60   =   0     solving for x   we have

x =  [ - 1 + sqrt(241)] / 2    and y   =  [ - 1 - sqrt(241)] / 2        or

x = [ - 1 - sqrt(241)] / 2     and  y  =  [ - 1 + sqrt(241)] / 2

CPhill  Mar 18, 2017

### 12 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details