+0

# Find an angle x where sin x = cos x

0
530
4

Find an angle x where sin x = cos x

Guest Mar 18, 2015

#4
+91435
+5

WOW heureka, you gave yourself something to chew on there!

My answer is no where near as impressive.

sinx=cosx          When cosx=0,    sinx ≠0     so    cosx ≠ 0  therefore I can divide by it.

$$\\\frac{sinx}{cosx}=1\\\\ tanx=1\\\\ tan is pos in the 1st an 3rd quad\\\\ x=\frac{\pi}{4},\;\;\frac{5\pi}{4}\;\;etc\\\\ x=n\pi+\frac{\pi}{4}\qquad n\in Z\qquad (n is an integer)$$

Melody  Mar 18, 2015
Sort:

#1
+5

sinx = cos x @45 degrees

Guest Mar 18, 2015
#2
+80956
+5

This will occur at 45° ± n180°  where n is an integer

CPhill  Mar 18, 2015
#3
+18827
+5

Find an angle x where sin x = cos x

$$\cos(x)-\sin(x)=0 \\\\ a\cdot \cos(x) + b\cdot \sin(x) = c \qquad | \qquad a=1 \qquad b=-1 \qquad c= 0\\ a\cdot \cos(x) + b\cdot \sin(x) = c \quad | \quad : a \\ \cos(x) + \frac{b}{a} \cdot \sin(x) = \frac{c}{a} \quad | \quad c = 0 \\\\ \cos(x) + \frac{b}{a} \cdot \sin(x) = 0 \\ \small{\text{  \text{We set } \tan{(\varepsilon)} = \frac{b}{a} \quad \text{ we have } a = 1 \text{ and } b = -1 \text{ so } \varepsilon = \arctan{(-1)} = -\frac{\pi}{4}  }}\\\\ \cos(x) + \frac{b}{a} \cdot \sin(x) = 0 \quad | \quad \tan{(\varepsilon)} = \frac{b}{a}\\\\ \cos(x) + \tan{(\varepsilon)}\cdot \sin(x) = 0 \\ \cos(x) + \frac{ \sin{(\varepsilon)} } { \cos{(\varepsilon)} } \cdot \sin(x) = 0 \quad | \quad \cdot \cos{(\varepsilon)} \\ \small{\text{  \cos{ (\varepsilon)} \cdot \cos(x) + \sin{(\varepsilon)} \cdot \sin(x) = 0 \quad | \quad \cos{ (x-\varepsilon )} = \cos{ (\varepsilon)} \cdot \cos(x) + \sin{(\varepsilon)} \cdot \sin(x) }}\\ \cos{ (x-\varepsilon )} =0 \quad | \quad \pm \arccos{}\\ x-\varepsilon = \pm \arccos{(0)} = \pm \frac{\pi}{2}\\ x-\varepsilon = \pm \frac{\pi}{2} \\ x= \varepsilon \pm \frac{\pi}{2} \quad | \quad \varepsilon = -\frac{\pi}{4}\\ x= -\frac{\pi}{4} \pm \frac{\pi}{2} \\\\ x_1= -\frac{\pi}{4} +\frac{\pi}{2} = \frac{\pi}{4} \\ x_1= 45\ensurement{^{\circ}} \pm k\cdot 360\ensurement{^{\circ}}$$

$$\\x_2= -\frac{\pi}{4} -\frac{\pi}{2} = -\frac{3}{4} \cdot \pi = -\frac{3}{4} \cdot \pi + 2\pi = \frac{5}{4} \cdot\pi \\ x_2 = 225\ensurement{^{\circ}} \pm k\cdot 360\ensurement{^{\circ}}$$

$$k=0,1,2\cdots$$

heureka  Mar 18, 2015
#4
+91435
+5

WOW heureka, you gave yourself something to chew on there!

My answer is no where near as impressive.

sinx=cosx          When cosx=0,    sinx ≠0     so    cosx ≠ 0  therefore I can divide by it.

$$\\\frac{sinx}{cosx}=1\\\\ tanx=1\\\\ tan is pos in the 1st an 3rd quad\\\\ x=\frac{\pi}{4},\;\;\frac{5\pi}{4}\;\;etc\\\\ x=n\pi+\frac{\pi}{4}\qquad n\in Z\qquad (n is an integer)$$

Melody  Mar 18, 2015

### 16 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details