+0

# Find dy/dx

+1
1
116
1

Yx+XX+Xy= ab

Find dy/dx...?

Guest Jul 25, 2017
Sort:

#1
+18607
+1

Find dy/dx

Yx+XX+Xy= ab

$$\begin{array}{|rcll|} \hline y^x+x^x+x^y &=& a^b \\ y^x+x^x+x^y -a^b &=& 0 \\ \hline \end{array}$$

Formula:

$$\begin{array}{|rcll|} \hline \frac{dy}{dx} = - \dfrac{F_x}{F_y} \\ \hline \end{array}$$

$$\mathbf{F_x =\ ?} \begin{array}{|rcll|} \hline F_x &=& \frac{d }{dx}y^x + \frac{d }{dx}x^x + \frac{d }{dx}x^y + \frac{d }{dx}a^b \\\\ h &=& y^x \quad & | \quad \ln() \\ \ln(h) &=& x\cdot \ln(y) \\ \frac{h'}{h} &=& \ln(y) \\ h' &=& h\cdot \ln(y) \\ h' &=& y^x\cdot \ln(y) \\ \mathbf{ \frac{d }{dx}y^x } & \mathbf{=} & \mathbf{ y^x\cdot \ln(y) } \\\\ h &=& x^x \quad & | \quad \ln() \\ \ln(h) &=& x\cdot \ln(x) \\ \frac{h'}{h} &=& x\cdot \frac{1}{x} + 1\cdot \ln(x) \\ h' &=& h \cdot \Big( 1+\ln(x) \Big) \\ \mathbf{ \frac{d }{dx}x^x } & \mathbf{=} & \mathbf{ x^x \cdot \Big( 1+ \ln(x) \Big) } \\\\ h &=& x^y \quad & | \quad \ln() \\ \ln(h) &=& y\cdot \ln(x) \\ \frac{h'}{h} &=& \frac{y}{x} \\ h' &=& h \cdot \frac{y}{x} \\ h' &=& x^y \cdot \frac{y}{x} \\ \mathbf{ \frac{d }{dx}x^y } & \mathbf{=} & \mathbf{ x^y \cdot \frac{y}{x} } \\\\ \mathbf{ \frac{d }{dx}a^b } & \mathbf{=} & \mathbf{ 0 } \\ \hline \end{array}$$

$$\mathbf{F_y =\ ?} \begin{array}{|rcll|} \hline F_y &=& \frac{d }{dy}y^x + \frac{d }{dy}x^x + \frac{d }{dy}x^y +\frac{d }{dy}a^b \\\\ h &=& y^x \quad & | \quad \ln() \\ \ln(h) &=& x\cdot \ln(y) \\ \frac{h'}{h} &=& \frac{x}{y} \\ h' &=& h\cdot \frac{x}{y} \\ h' &=& y^x\cdot \frac{x}{y} \\ \mathbf{ \frac{d }{dy}y^x } & \mathbf{=} & \mathbf{ y^x\cdot \frac{x}{y} } \\\\ \mathbf{ \frac{d }{dy}x^x } & \mathbf{=} & \mathbf{ 0 } \\ h &=& x^y \quad & | \quad \ln() \\ \ln(h) &=& y\cdot \ln(x) \\ \frac{h'}{h} &=& \ln(x) \\ h' &=& h \cdot \ln(x) \\ h' &=& x^y \cdot \ln(x) \\ \mathbf{ \frac{d }{dy}x^y } & \mathbf{=} & \mathbf{ x^y \cdot \ln(x) } \\\\ \mathbf{ \frac{d }{dy}a^b } & \mathbf{=} & \mathbf{ 0 } \\ \hline \end{array}$$

$$\begin{array}{|rcll|} \hline \frac{dy}{dx} &=& - \dfrac{F_x}{F_y} \\\\ \frac{dy}{dx} &=& - \dfrac{ y^x\cdot \ln(y) + x^x \cdot \Big( 1+ \ln(x) \Big) + x^y \cdot \frac{y}{x} + 0 } { y^x\cdot \frac{x}{y} + 0 + x^y \cdot \ln(x) + 0 } \\\\ \frac{dy}{dx} &=& - \dfrac{ y^x\cdot \ln(y) + x^x \cdot \Big( 1+ \ln(x) \Big) + x^y \cdot \frac{y}{x} } { y^x\cdot \frac{x}{y} + x^y \cdot \ln(x) } \\\\ \frac{dy}{dx} &=& - \dfrac{ y^x\cdot \ln(y) + x^x \cdot \Big( 1+ \ln(x) \Big) + x^{y-1} \cdot y } { y^{x-1}\cdot x + x^y \cdot \ln(x) } \\\\ \mathbf{ \frac{dy}{dx} } & \mathbf{=} & \mathbf{ - \dfrac{ y^x\cdot \ln(y) + x^x \cdot \Big( 1+ \ln(x) \Big) + x^{y-1} \cdot y } { x^y \cdot \ln(x) + y^{x-1}\cdot x } } \\ \hline \end{array}$$

heureka  Jul 25, 2017

### 17 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details