+0

# Find h to the nearest whole number.

0
205
2

For triangle HJK, j = 31, m∠H = 132 degrees, m∠J = 21 degrees, and m∠K = 27 degrees. Find h to the nearest whole number.

Guest Feb 2, 2015

#1
+18829
+10

For triangle HJK, j = 31, m∠H = 132 degrees, m∠J = 21 degrees, and m∠K = 27 degrees. Find h to the nearest whole number.

$$\small{\text{  \tan{(132)}=\frac{h}{p} \qquad \tan{(27)}=\frac{h}{q} \qquad p+q=31\ m  }}\\ \small{\text{  p=\frac{h}{\tan{(132)}} \qquad q=\frac{h}{\tan{(27)}} \qquad \frac{h}{\tan{(132)}} +\frac{h}{\tan{(27)}}=31\ m  }}\\ \small{\text{  h* \left( \frac{1}{\tan{(132)}} + \frac{1}{\tan{(27)}} \right)=31\ m  }}\\ \small{\text{  h* \left( -0.90040404430 + 1.96261050551 \right)=31\ m  }}\\ \small{\text{  h*1.06220646121 =31\ m  }}\\ \small{\text{  h =\frac{31}{1.06220646121}\ m = 29.1845334520\ m  }}\\ \small{\text{ h to the nearest whole number:  h = 29\ m  }}$$

heureka  Feb 3, 2015
Sort:

#1
+18829
+10

For triangle HJK, j = 31, m∠H = 132 degrees, m∠J = 21 degrees, and m∠K = 27 degrees. Find h to the nearest whole number.

$$\small{\text{  \tan{(132)}=\frac{h}{p} \qquad \tan{(27)}=\frac{h}{q} \qquad p+q=31\ m  }}\\ \small{\text{  p=\frac{h}{\tan{(132)}} \qquad q=\frac{h}{\tan{(27)}} \qquad \frac{h}{\tan{(132)}} +\frac{h}{\tan{(27)}}=31\ m  }}\\ \small{\text{  h* \left( \frac{1}{\tan{(132)}} + \frac{1}{\tan{(27)}} \right)=31\ m  }}\\ \small{\text{  h* \left( -0.90040404430 + 1.96261050551 \right)=31\ m  }}\\ \small{\text{  h*1.06220646121 =31\ m  }}\\ \small{\text{  h =\frac{31}{1.06220646121}\ m = 29.1845334520\ m  }}\\ \small{\text{ h to the nearest whole number:  h = 29\ m  }}$$

heureka  Feb 3, 2015
#2
+26403
+5

I think the sine rule might be the simplest approach here:

h/sin(H) = j/sin(J)

$${\mathtt{h}} = {\frac{\underset{\,\,\,\,^{{360^\circ}}}{{sin}}{\left({\mathtt{132}}^\circ\right)}{\mathtt{\,\times\,}}{\mathtt{31}}}{\underset{\,\,\,\,^{{360^\circ}}}{{sin}}{\left({\mathtt{21}}^\circ\right)}}} \Rightarrow {\mathtt{h}} = {\mathtt{64.284\: \!458\: \!526\: \!596\: \!557\: \!1}}$$

or h = 64 to the nearest whole number

I've assumed h is opposite angle H, j is opposite angle J etc.

.

Alan  Feb 3, 2015

### 4 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details