+0  
 
0
70
1
avatar

If cos(θ) = − 10/11 with θ in Quadrant III, what is sin(θ)?

Guest Oct 10, 2017

Best Answer 

 #1
avatar+5553 
+2

From the Pythagorean identity,

 

sin2 θ  +  cos2 θ     =  1        Plug in  -10/11  for  cos θ .

 

sin2 θ  +  (-10/11)2  =  1       \((-\frac{10}{11})^2=(-\frac{10}{11})(-\frac{10}{11})=\frac{100}{121}\)

 

sin2 θ  +  100/121   =  1       Subtract   100 / 121  from both sides.

 

sin2 θ   =   21/121                Since sin is negative in Quad III, take the negative sqrt of both sides.

 

sin θ     =  \(-\sqrt{\frac{21}{121}}\)

 

sin θ     =   \(-\frac{\sqrt{21}}{11}\)

hectictar  Oct 10, 2017
edited by hectictar  Oct 10, 2017
Sort: 

1+0 Answers

 #1
avatar+5553 
+2
Best Answer

From the Pythagorean identity,

 

sin2 θ  +  cos2 θ     =  1        Plug in  -10/11  for  cos θ .

 

sin2 θ  +  (-10/11)2  =  1       \((-\frac{10}{11})^2=(-\frac{10}{11})(-\frac{10}{11})=\frac{100}{121}\)

 

sin2 θ  +  100/121   =  1       Subtract   100 / 121  from both sides.

 

sin2 θ   =   21/121                Since sin is negative in Quad III, take the negative sqrt of both sides.

 

sin θ     =  \(-\sqrt{\frac{21}{121}}\)

 

sin θ     =   \(-\frac{\sqrt{21}}{11}\)

hectictar  Oct 10, 2017
edited by hectictar  Oct 10, 2017

28 Online Users

avatar
avatar
avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details