+0  
 
+1
43
1
avatar+378 

Find the equation of the line passing through the points (-3, -16) and (4,5). Enter your answer in "y=mx+b" form.

waffles  Nov 10, 2017

Best Answer 

 #1
avatar+5254 
+1

First let's find the slope between these two points.

 

slope  \(=\,\frac{\text{change in y}}{\text{change in x}}\,=\,\frac{5-(-16)}{4-(-3)}\,=\,\frac{5+16}{4+3}\,=\,\frac{21}{7}\)   =   3

 

Using a slope of  3  and the point  (4, 5) , the equation of the line in point-slope form is

 

y - 5  =  3(x - 4)          Distribute the  3 .

 

y - 5  =  3x - 12          Add  5  to both sides.

 

y  =  3x - 7          smiley

hectictar  Nov 11, 2017
Sort: 

1+0 Answers

 #1
avatar+5254 
+1
Best Answer

First let's find the slope between these two points.

 

slope  \(=\,\frac{\text{change in y}}{\text{change in x}}\,=\,\frac{5-(-16)}{4-(-3)}\,=\,\frac{5+16}{4+3}\,=\,\frac{21}{7}\)   =   3

 

Using a slope of  3  and the point  (4, 5) , the equation of the line in point-slope form is

 

y - 5  =  3(x - 4)          Distribute the  3 .

 

y - 5  =  3x - 12          Add  5  to both sides.

 

y  =  3x - 7          smiley

hectictar  Nov 11, 2017

4 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details