+0

# find the equation of the perpendicular bisector of the line joining A(2, -1) B(8, 3)

0
475
1

Find the equation of the perpendicular bisector of the line joining A(2, -1) B(8, 3)

Guest Dec 31, 2014

#1
+17711
+10

To be a perpendicular bisector it must be both perpendicular and a bisector.

To be a bisector, it must pass through the midpoint of the line segment AB.

A formula for finding the midpoint of A(x1, y1) and B(x2, y2) is  Midpoint  =  ( (x1 + x2)/2, (y1 + y2)/2 ).

--->   Midpoint  =  ( (2 + 8)/2, (-1 + 3)/2 )  =  (5, 1)

To be perpendicular, the slope of the line must be the negative reciprocal of the original line.

A formula for slope is:  m  =  (y2 - y1) / (x2 - x1)

--->   Slope  =  (3 - -1) / (8 - 2)  =  4/6  =  2/3

--->  Negative reciprocal of that slope:  m  =  -3/2

Point-slope equation of a line:  y - y1  =  m(x - x1)

--->   Point  =  (5, 1)         Slope  =  -3/2

--->   y - 1  =  -3/2(x - 5)

--->   2y - 2  =  -3(x - 5)

--->   2y - 2  =  -3x + 15

--->   2y  =  -3x + 17

--->   3x + 2y  =  17

geno3141  Dec 31, 2014
Sort:

#1
+17711
+10

To be a perpendicular bisector it must be both perpendicular and a bisector.

To be a bisector, it must pass through the midpoint of the line segment AB.

A formula for finding the midpoint of A(x1, y1) and B(x2, y2) is  Midpoint  =  ( (x1 + x2)/2, (y1 + y2)/2 ).

--->   Midpoint  =  ( (2 + 8)/2, (-1 + 3)/2 )  =  (5, 1)

To be perpendicular, the slope of the line must be the negative reciprocal of the original line.

A formula for slope is:  m  =  (y2 - y1) / (x2 - x1)

--->   Slope  =  (3 - -1) / (8 - 2)  =  4/6  =  2/3

--->  Negative reciprocal of that slope:  m  =  -3/2

Point-slope equation of a line:  y - y1  =  m(x - x1)

--->   Point  =  (5, 1)         Slope  =  -3/2

--->   y - 1  =  -3/2(x - 5)

--->   2y - 2  =  -3(x - 5)

--->   2y - 2  =  -3x + 15

--->   2y  =  -3x + 17

--->   3x + 2y  =  17

geno3141  Dec 31, 2014

### 5 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details