+0

# find the general term of a geometric sequence

0
112
2

27=u1r^3/192=u1r^6

Guest Jun 22, 2017

#1
+90526
+2

27=u1r^3/192=u1r^6

$$27=\frac{u_1r^3}{192}=u_1r^6\\ \frac{r^3}{192}=r^6\\ \frac{1}{192}=r^3\\ r=\frac{1}{\sqrt[3]{192}}\\ r=\frac{1}{4\sqrt[3]{3}}\\ 27=u_1 r^6\\ 27=\frac{u_1}{ 192^2}\\ u_1=27*192^2\\ u_1=995328$$

$$T_n=\dfrac{995328}{(\sqrt[3]{192})^{n-1}}\\~\\ \boxed{T_n=\dfrac{995328}{192^{((n-1)/3)}}}\\~\\ check\\ \frac{u_1r^3}{192}=\frac{995328*(192^{-1/3})^3}{192}=\frac{995328}{192^2}=27\\ u_1r^6=995328*((192)^{-1/3})^6\\ u_1r^6=995328*(192)^{-2}\\ u_1r^6=27\\ excellent$$

Melody  Jun 22, 2017
Sort:

#1
+90526
+2

27=u1r^3/192=u1r^6

$$27=\frac{u_1r^3}{192}=u_1r^6\\ \frac{r^3}{192}=r^6\\ \frac{1}{192}=r^3\\ r=\frac{1}{\sqrt[3]{192}}\\ r=\frac{1}{4\sqrt[3]{3}}\\ 27=u_1 r^6\\ 27=\frac{u_1}{ 192^2}\\ u_1=27*192^2\\ u_1=995328$$

$$T_n=\dfrac{995328}{(\sqrt[3]{192})^{n-1}}\\~\\ \boxed{T_n=\dfrac{995328}{192^{((n-1)/3)}}}\\~\\ check\\ \frac{u_1r^3}{192}=\frac{995328*(192^{-1/3})^3}{192}=\frac{995328}{192^2}=27\\ u_1r^6=995328*((192)^{-1/3})^6\\ u_1r^6=995328*(192)^{-2}\\ u_1r^6=27\\ excellent$$

Melody  Jun 22, 2017
#2
+76837
0

Very nice, Melody.....!!!!

CPhill  Jun 22, 2017

### 25 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details