+0

# Find the last 2 digits of 7^2014?

0
197
2

Find the last 2 digits of 7^2014?

Guest Mar 27, 2015

#2
+91469
+13

I am still getting used to these questions and I still like them. :)

I'd do it the same as CPhill but I would start with a smaller number.

\$\$\\7^1=7\\
7^2=49\\
7^3=343\\
7^4=2401\\
\$that is a really helpful one\$\\
\$(Any number ending is 01) raised to any positive integer n must also end in 01 because only the last 2 digits will affect the outcome and 1^n=1 \$ \\\\
(7^4)^{n} \$ must end in 01 for any positive integer n\$\\\\
7^{2014}=7^{2012}*7^2\\
7^{2014}=7^{4*503}*7^2\\
7^{2014}=(7^4)^{503}*49\\
7^{2014}= ....01 *49\\
7^{2014}= ....49\\\$\$

so the last 2 digits will be 49    Just like CPhill said

Melody  Mar 27, 2015
Sort:

#1
+81031
+13

Notice that

7^20  ends in 01

So

(7^20)^5  = 7^100 also ends in 01

And

7^2000 = (7^100)^20   will also end in 01

And 7^14   ends in 49

So   7^2014 =   7^2000 x 7^14  =      .........01  x  ........49

Will  also end in 49

CPhill  Mar 27, 2015
#2
+91469
+13

I am still getting used to these questions and I still like them. :)

I'd do it the same as CPhill but I would start with a smaller number.

\$\$\\7^1=7\\
7^2=49\\
7^3=343\\
7^4=2401\\
\$that is a really helpful one\$\\
\$(Any number ending is 01) raised to any positive integer n must also end in 01 because only the last 2 digits will affect the outcome and 1^n=1 \$ \\\\
(7^4)^{n} \$ must end in 01 for any positive integer n\$\\\\
7^{2014}=7^{2012}*7^2\\
7^{2014}=7^{4*503}*7^2\\
7^{2014}=(7^4)^{503}*49\\
7^{2014}= ....01 *49\\
7^{2014}= ....49\\\$\$

so the last 2 digits will be 49    Just like CPhill said

Melody  Mar 27, 2015

### 3 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details