+0

# For what value of c will the polynomial P(x) = -2x^3 + cx^2 - 5x + 2 have the same remainder when it is divided by x - 2 and by x + 1?

0
647
2

For what value of c will the polynomial P(x) = -2x^3 + cx^2 - 5x + 2 have the same remainder when it is divided by x - 2 and by x + 1?

Guest Apr 2, 2015

#1
+80933
+10

We can use some polynomial "long division" to help us with this one.....

-2x^2          + [c- 4]x          + [2c - 13]

----------------------------------------------------------------

x - 2     -2x^3 + cx^2            - 5x                       + 2

-2x^3  + 4x^2

----------------------------------------------------------------

(c -4)x^2      -5x

(c - 4)x^2    -2(c - 4)x

----------------------------------------------------------------

[2c - 13]x               + 2

[2c - 13]x              -2[2c - 13]

-----------------------------------------------------------------------

4c  - 24

-2x^2          + [c + 2]x          - [ 7 + c]

-------------------------------------------------------------

x + 1    -2x^3  + cx^2             - 5x                      + 2

-2x^3  -  2x^2

-----------------------------------------------------------------------

[c + 2)x^2     -5x

[c + 2]x^2    + [c + 2)x

------------------------------------------------------------------------

- [7 + c] x            + 2

- [7 + c] x          - [7 + c]

--------------------------------------------------------------------------

9 + c

And it's obvious that the remainders will be equal when.....

4c - 24 = 9 + c      subtract c from both sides and add 24 to both sides

3c  =  33   .....  so .......

c = 11

CPhill  Apr 2, 2015
Sort:

#1
+80933
+10

We can use some polynomial "long division" to help us with this one.....

-2x^2          + [c- 4]x          + [2c - 13]

----------------------------------------------------------------

x - 2     -2x^3 + cx^2            - 5x                       + 2

-2x^3  + 4x^2

----------------------------------------------------------------

(c -4)x^2      -5x

(c - 4)x^2    -2(c - 4)x

----------------------------------------------------------------

[2c - 13]x               + 2

[2c - 13]x              -2[2c - 13]

-----------------------------------------------------------------------

4c  - 24

-2x^2          + [c + 2]x          - [ 7 + c]

-------------------------------------------------------------

x + 1    -2x^3  + cx^2             - 5x                      + 2

-2x^3  -  2x^2

-----------------------------------------------------------------------

[c + 2)x^2     -5x

[c + 2]x^2    + [c + 2)x

------------------------------------------------------------------------

- [7 + c] x            + 2

- [7 + c] x          - [7 + c]

--------------------------------------------------------------------------

9 + c

And it's obvious that the remainders will be equal when.....

4c - 24 = 9 + c      subtract c from both sides and add 24 to both sides

3c  =  33   .....  so .......

c = 11

CPhill  Apr 2, 2015
#2
+91436
+5

That was quite a feat Chris,

I will do it using remainder theorem.

For what value of c will the polynomial P(x) = -2x^3 + cx^2 - 5x + 2 have the same remainder when it is divided by x - 2 and by x + 1?

When P(x) is divided by x-2 the remainder will be     p(2)=-2*8+c*4-10+2 = -16+4c-8 = 4c-24

When P(x) is divided by x+1 the remainder will be    p(-1)=-2*-1+c*1+5+2=2+c+7 = 9+c

If these are the same then

4c-24=9+c

3c=33

c=11

Melody  Apr 2, 2015

### 4 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details