+0

-1
142
1
+75

The coordinates of the vertices of trapezoid EFGH are E(−8, 8) , F(−4, 12) , G(−4, 0) , and H(−8, 4) . The coordinates of the vertices of trapezoid E′F′G′H′ are E′(−8, 6) , F′(−5, 9) , G′(−5, 0) , andH′(−8, 3) .

Which statement correctly describes the relationship between trapezoid EFGH and trapezoid E′F′G′H′ ?

Trapezoid EFGH is not congruent to trapezoid E′F′G′H′ because there is no sequence of rigid motions that maps trapezoid EFGH to trapezoid E′F′G′H′ .

Trapezoid EFGH is congruent to trapezoid E′F′G′H′ because you can map trapezoid EFGH totrapezoid E′F′G′H′ by reflecting it across the x-axis and then translating it up 14 units, which is a sequence of rigid motions.

Trapezoid EFGH is congruent to trapezoid E′F′G′H′ because you can map trapezoid EFGH totrapezoid E′F′G′H′ by translating it down 2 units and then reflecting it over the y-axis, which is a sequence of rigid motions.

Trapezoid EFGH is congruent to trapezoid E′F′G′H′ because you can map trapezoid EFGH totrapezoid E′F′G′H′ by dilating it by a factor of 34 and then translating it 2 units left, which is a sequence of rigid motions.

Severoth  Dec 12, 2017
Sort:

#1
+81023
+2

Trapezoid EFGH is not congruent to trapezoid E′F′G′H′ because there is no sequence of rigid motions that maps trapezoid EFGH to trapezoid E′F′G′H′ .

CPhill  Dec 12, 2017

### 6 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details