+0

# Given: m || n , m∠1=65∘, m∠2=60, and BD−→bisects ∠ABC. Prove m∠6=70∘

0
94
1

Given: m || n, m∠1=65∘, m∠2=60, and BD−→bisects ∠ABC.

Prove m∠6=70∘

It is given that m∥n, m∠1=65∘,m∠2=60∘, and BD−→bisects ∠ABC. Because of the triangle sum theorem,

∘m∠3=55∘ . By the ________, ∠3≅∠4, so m∠4=55∘. Using the ________,

m∠ABC=110∘. m∠5=110∘ because vertical angles are congruent. Because of the ________

m∠5+m∠6=180∘. Substituting gives 110∘+m∠6=180∘. So, by the __________, m∠6=70∘.

Options: [Definition of bisector], [Transitive property of equality],[angle addition postulate],

[same side interior angles theorm] ,  [corresponding angles postulate],  [alternate interior angles postulate],   [subtraction property of equality],   [linear pair of postulate]

Guest Dec 11, 2017
Sort:

#1
+81023
+1

Definition of Bisector

Same Side Interior Angles Theorem

Subtraction Property of Equality

CPhill  Dec 11, 2017

### 6 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details