+0

# Given that the graphs of \$y=h(x)\$ and \$y=j(x)\$ intersect at \$(2,2),\$ \$(4,6),\$ \$(6,12),\$ and \$(8,12),\$ there is one point where the graphs of

0
49
2
+180

Given that the graphs of \$y=h(x)\$ and \$y=j(x)\$ intersect at \$(2,2),\$ \$(4,6),\$ \$(6,12),\$ and \$(8,12),\$ there is one point where the graphs of \$y=h(2x)\$ and \$y=2j(x)\$ must intersect. What is the sum of the coordinates of that point?

michaelcai  Aug 28, 2017

#1
+4470
+5

The given intersection points lie on  y = h(x)  and  y = j(x)  .

For example...since  (8, 12)  is an intersection point....   12 = h(8)   and   12 = j(8)

When  x = 4  ,     h(2x)    =    h(2(4))    =    h(8)    =    12    =    y

When  x = 4  ,     2j(x)     =    2j(4)       =    2(6)    =    12    =    y

So... (4, 12)  is a point on  y = h(2x)  and on  y = 2j(x)  .

4 + 12  =  16

Sorry that this isn't a very good explanation.....If it doesn't make sense, it might help to try different numbers for  x  , such as 1, 2, or 6...to see why they don't work.

hectictar  Aug 29, 2017
Sort:

#1
+4470
+5

The given intersection points lie on  y = h(x)  and  y = j(x)  .

For example...since  (8, 12)  is an intersection point....   12 = h(8)   and   12 = j(8)

When  x = 4  ,     h(2x)    =    h(2(4))    =    h(8)    =    12    =    y

When  x = 4  ,     2j(x)     =    2j(4)       =    2(6)    =    12    =    y

So... (4, 12)  is a point on  y = h(2x)  and on  y = 2j(x)  .

4 + 12  =  16

Sorry that this isn't a very good explanation.....If it doesn't make sense, it might help to try different numbers for  x  , such as 1, 2, or 6...to see why they don't work.

hectictar  Aug 29, 2017
#2
+76069
+1

Thanks, hectictar......these often throw me.....!!!!

CPhill  Aug 29, 2017

### 25 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details