+0  
 
+1
34
4
avatar+363 

Find the sum of all integers \(k\) such that \(\binom{23}{4} + \binom{23}{5} = \binom{24}{k}\).

Mr.Owl  Dec 4, 2017
Sort: 

4+0 Answers

 #1
avatar+354 
0

no integers, but there is 3.259

 #2
avatar+363 
0

There is supposed to be an integer.

Mr.Owl  Dec 4, 2017
 #3
avatar+79846 
+1

C (23, 4)  =      23! / [ (23 - 4)! * 4! ]   =  23! / [ 19! * 4! ]

C(23,5)  =   23! / [ (23 - 5)! * 5! ]  =  23! / { 18! * 5!]

 

So.......we want to solve this

 

23! / [ 19! * 4! ]  + 23! / [ 18! * 5!]  =  24! / [ (24 - k)! * k! ]

 

1 / [ 19! * 24] + 1 / [ 18! * 120 ]  =  24 / [ (24 - k)! * k! ]

 

[ 5   + 19 ]  / [ 19! * 5!]  =  24 / [ (24 - k)! * k! ]

 

Which implies that

 

19! * 5!   =   (24 - k)! * k!

 

Which implies that    k  = 5

 

But  C (24, 5)  =  C(24, 19)

 

So...... 5 + 19  =  24

 

cool cool cool

CPhill  Dec 4, 2017
 #4
avatar+363 
+1

Thank you so much CPhill!!! I had no idea how to solve that, THANKS!!!

Mr.Owl  Dec 4, 2017

17 Online Users

avatar
avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details