+0

+2
30
1
+230

perform the operations indicated

y2+2y/x+ 2xy +yDivided by y2 - 4 / x+y

ManuelBautista2019  Dec 4, 2017

#1
+5552
+1

Is this the right expresion?

$$\frac{y^2+2y}{x^2+2xy+y^2}\div\frac{y^2-4}{x+y}$$

First let's factor the numerators and denominators.

$$=\,\frac{y(y+2)}{x^2+xy +xy+y^2}\div \frac{(y+2)(y-2)}{x+y} \\~\\ =\,\frac{y(y+2)}{x(x+y) +y(x+y)}\div \frac{(y+2)(y-2)}{x+y} \\~\\ =\,\frac{y(y+2)}{(x+y)(x+y)}\div \frac{(y+2)(y-2)}{x+y}$$

Now Invert the second fraction and change to multiplication.

$$=\,\frac{y(y+2)}{(x+y)(x+y)}\cdot \frac{x+y}{(y+2)(y-2)} \\~\\ =\,\frac{y(y+2)(x+y)}{(x+y)(x+y)(y+2)(y-2)}$$

Now reduce the fraction as much as possible.

$$=\,\frac{y}{(x+y)(y-2)}$$

hectictar  Dec 4, 2017
Sort:

#1
+5552
+1

Is this the right expresion?

$$\frac{y^2+2y}{x^2+2xy+y^2}\div\frac{y^2-4}{x+y}$$

First let's factor the numerators and denominators.

$$=\,\frac{y(y+2)}{x^2+xy +xy+y^2}\div \frac{(y+2)(y-2)}{x+y} \\~\\ =\,\frac{y(y+2)}{x(x+y) +y(x+y)}\div \frac{(y+2)(y-2)}{x+y} \\~\\ =\,\frac{y(y+2)}{(x+y)(x+y)}\div \frac{(y+2)(y-2)}{x+y}$$

Now Invert the second fraction and change to multiplication.

$$=\,\frac{y(y+2)}{(x+y)(x+y)}\cdot \frac{x+y}{(y+2)(y-2)} \\~\\ =\,\frac{y(y+2)(x+y)}{(x+y)(x+y)(y+2)(y-2)}$$

Now reduce the fraction as much as possible.

$$=\,\frac{y}{(x+y)(y-2)}$$

hectictar  Dec 4, 2017

### 14 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details