+0

+5
147
3
+359

The three points (3,-5), (-a + 2, 3), and (2a+3,2) lie on the same line. What is a?

MIRB16  Jul 27, 2017
Sort:

#1
0

Don't be a fat fu*k

Guest Jul 27, 2017
#2
+4728
+1

Since all the points are on the same line, the slope between each point will be the same.

slope  =  $$\frac{\text{change in y}}{\text{change in x}}$$

slope between first and second points  =  $$\frac{(-5)-(3)}{(3)-(-a+2)}=\frac{-8}{1+a}$$

slope between second and third points  =  $$\frac{(3)-(2)}{(-a+2)-(2a+3)}=\frac{1}{-3a-1}$$

slope between third and first points  =  $$\frac{(2)-(-5)}{(2a+3)-(3)}=\frac{7}{2a}$$

Let's pick any two and equate them.

$$\frac{7}{2a}=\frac{-8}{1+a}$$         Cross - multiply...

(7)(1+a) = (-8)(2a)

7 + 7a  =  -16a

7  =  -23a

-7/23  =  a               And here is a graph: https://www.desmos.com/calculator/2pdpfrqz05

hectictar  Jul 27, 2017
#3
+18621
0

The three points (3,-5), (-a + 2, 3), and (2a+3,2) lie on the same line.

What is a?

Intercept theorem:

$$\begin{array}{|rcll|} \hline \dfrac{(2a-3)-(3)}{ 2-(-5) } &=& \dfrac{ (-a+2) - 3 } { 3-(-5) } \\\\ \dfrac{2a}{ 7 } &=& \dfrac{ -a -1 } { 8 } \\\\ 16a &=& -7a-7 \\ 23a &=& -7 \\ \mathbf{a} &\mathbf{=}& \mathbf{ -\frac{7}{23} } \\ \hline \end{array}$$

heureka  Jul 28, 2017

### 5 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details