+0  
 
+1
169
3
avatar+260 

I got square root 113 for the first question.

How do i find the angle? do i to a tangent inverse?

Veteran  Mar 19, 2017
Sort: 

3+0 Answers

 #1
avatar+79894 
+1

tan (theta) =  (7 / -8)  

 

arctan (7/-8) = theta  = -41.1859°

 

The terminal point of this vector lies in the second quadramt....so the angle is

 

180 - 41.1859  ≈ 138.81407° ≈  138. 8141°

 

And this is the angle ( theta ) that the vector makes with the positive x axis

 

 

cool cool cool

CPhill  Mar 19, 2017
 #2
avatar+260 
+1

That was one of my answers, the other one i got was like 84 degrees, i missed one class and it was about this stuff, so thanks. I will most likely ask a few more questions tonight if im stuck. I appriecate all the help around here.

Veteran  Mar 19, 2017
 #3
avatar+18777 
0

1. The magnitude of  \(\vec{u}\).

Round your answer to at least four decimal places.

\(\vec{u} = \binom{-8}{7}\)

\(\begin{array}{|rcll|} \hline ||\vec{v}|| &=& \sqrt{(-8)^2+7^2} \\ &=& \sqrt{64+49} \\ &=& \sqrt{113} \\ &=& 10.6301458127 \\ &\approx& 10.6301 \\ \hline \end{array}\)

 

2.The direction of \(\vec{u}\), thaat is the angle \(\theta\) it makes with the positive x-axis.

State your answer in degrees, rounded to at least four decimal places.

\(\vec{u} = \binom{-8}{7} \)

\(\begin{array}{|rcll|} \hline \tan(\theta) &=& \frac{|~\vec{e_x} \times \vec{u}~| } {\vec{e_x} \cdot \vec{v} } \\ &=& \frac{ \left|~\binom{1}{0} \times \binom{-8}{7}~\right| } {\binom{1}{0} \cdot \binom{-8}{7} } \\ &=& \frac{ (1)\cdot (7) - (0)\cdot (-8) } { (1)\cdot (-8) + (0)\cdot (7) } \\ &=& \frac{ 7+0 } { -8+0 } \\ &=& \frac{ 7} { -8 } \quad & | \quad II.\text{Quadrant} \\ \theta &=& \arctan(\frac{ 7 } { -8 }) \\ \theta &=& \arctan(-0.875) \\ \theta &=& -41.1859251657^{\circ} + 180^{\circ} \quad & | \quad II.\text{Quadrant} \\ \theta &=& 138.814074834^{\circ} \\ \theta &\approx& 138.8141^{\circ} \\ \hline \end{array} \)

 

 

laugh

heureka  Mar 20, 2017

6 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details