+0  
 
0
172
1
avatar+37 

A market gardener has to fertilize a triangular field with sides of lengths 90m, 45m, and 65m. The fertilizer is to be spread so that 1 kg covers 10m squared. One bag of fertilizer has a mass of 9.1 kg. How many bags of fertilizer will he need?

micheala950831  Mar 28, 2017

Best Answer 

 #1
avatar+18777 
+1

A market gardener has to fertilize a triangular field with sides of lengths 90m, 45m, and 65m.

The fertilizer is to be spread so that 1 kg covers 10m squared. One bag of fertilizer has a mass of 9.1 kg.

How many bags of fertilizer will he need?

 

Let A = the area of the triangular field

Let a = 90 m
Let b = 45 m
Let c = 65 m

 

Heron:

\(\begin{array}{|rcll|} \hline A &=& \sqrt{s(s-a)(s-b)(s-c)} \quad & | \quad s = \frac{a+b+c}{2}= \frac{90+45+65}{2}=100 \\ A &=& \sqrt{100\cdot(100-90)\cdot(100-45)\cdot(100-65)} \\ A &=& \sqrt{100\cdot(10)\cdot(55)\cdot(35)} \\ A &=& 10\cdot\sqrt{10\cdot 55\cdot 35} \\ A &=& 10\cdot\sqrt{19250} \\ A &=& 10\cdot 138.744369255 \\ A &=& 1387.44369255\ m^2 \\ \hline \end{array} \)

 

The area of the triangular field is 1387.44 m2

 

Let x = bags of fertilizer

\(\begin{array}{|rcll|} \hline x &=& A \cdot \frac{1\ kg}{10\ m^2} \cdot \frac{1\ \text{bag}}{9.1\ kg} \quad & | \quad A &=& 1387.44369255\ m^2 \\ x &=& 1387.44369255\ m^2 \cdot \frac{1\ kg}{10\ m^2} \cdot \frac{1\ \text{bag}}{9.1\ kg} \\ x &=& \frac{1387.44369255 }{10\cdot 9.1 } \ \text{bags} \\ x &=& \frac{1387.44369255 }{91} \ \text{bags} \\ x &=& 15.2466339841\ \text{bags} \\ \hline \end{array} \)

 

We need \(\approx\)16 bags

 

laugh

heureka  Mar 28, 2017
Sort: 

1+0 Answers

 #1
avatar+18777 
+1
Best Answer

A market gardener has to fertilize a triangular field with sides of lengths 90m, 45m, and 65m.

The fertilizer is to be spread so that 1 kg covers 10m squared. One bag of fertilizer has a mass of 9.1 kg.

How many bags of fertilizer will he need?

 

Let A = the area of the triangular field

Let a = 90 m
Let b = 45 m
Let c = 65 m

 

Heron:

\(\begin{array}{|rcll|} \hline A &=& \sqrt{s(s-a)(s-b)(s-c)} \quad & | \quad s = \frac{a+b+c}{2}= \frac{90+45+65}{2}=100 \\ A &=& \sqrt{100\cdot(100-90)\cdot(100-45)\cdot(100-65)} \\ A &=& \sqrt{100\cdot(10)\cdot(55)\cdot(35)} \\ A &=& 10\cdot\sqrt{10\cdot 55\cdot 35} \\ A &=& 10\cdot\sqrt{19250} \\ A &=& 10\cdot 138.744369255 \\ A &=& 1387.44369255\ m^2 \\ \hline \end{array} \)

 

The area of the triangular field is 1387.44 m2

 

Let x = bags of fertilizer

\(\begin{array}{|rcll|} \hline x &=& A \cdot \frac{1\ kg}{10\ m^2} \cdot \frac{1\ \text{bag}}{9.1\ kg} \quad & | \quad A &=& 1387.44369255\ m^2 \\ x &=& 1387.44369255\ m^2 \cdot \frac{1\ kg}{10\ m^2} \cdot \frac{1\ \text{bag}}{9.1\ kg} \\ x &=& \frac{1387.44369255 }{10\cdot 9.1 } \ \text{bags} \\ x &=& \frac{1387.44369255 }{91} \ \text{bags} \\ x &=& 15.2466339841\ \text{bags} \\ \hline \end{array} \)

 

We need \(\approx\)16 bags

 

laugh

heureka  Mar 28, 2017

21 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details