+0  
 
0
45
2
avatar+58 

We have a right triangle, triangle ABC where the legs AB and AC have lengths 6 and 3sqrt3 respectively. Medians AM and CN meet at point P. What is the length of CP?

bbelt711  Jul 30, 2017
Sort: 

2+0 Answers

 #1
avatar+18356 
+1

We have a right triangle, triangle ABC where the legs AB and AC have lengths 6 and 3sqrt3 respectively.

Medians AM and CN meet at point P.

What is the length of CP?

 

Let \(\vec{A} = \binom{0}{0}\)
Let \(\vec{B} = \binom{6}{0}\)
Let \(\vec{C} = \binom{0}{3\sqrt{3}}\)

 

\(\mathbf{\vec{P} = \ ?}\)

\(\begin{array}{|rcll|} \hline \vec{P} &=& \frac13 ( \vec{A}+\vec{B}+\vec{C} ) \\ \vec{P} &=& \frac13 \left( \binom{0}{0}+\binom{6}{0}+\binom{0}{3\sqrt{3}} \right) \\ \vec{P} &=& \frac13 \cdot \binom{0+6+0}{0+0+3\sqrt{3} } \\ \vec{P} &=& \frac13 \cdot \binom{6}{3\sqrt{3} } \\ \vec{P} &=& \dbinom{2}{ \sqrt{3} } \\ \hline \end{array}\)

 

CP = ?

\(\begin{array}{|rcll|} \hline CP &=& |~\vec{C}-\vec{P}~| \\ CP &=& |~\binom{0}{3\sqrt{3}}-\binom{2}{ \sqrt{3} }~| \\ CP &=& |~\binom{0-2}{3\sqrt{3}-\sqrt{3} } ~| \\ CP &=& |~\binom{-2}{2\sqrt{3} } ~| \\ CP &=& \sqrt{(-2)^2+(2\sqrt{3})^2 } \\ CP &=& \sqrt{4+ 4\cdot3 } \\ CP &=& \sqrt{4+ 12 } \\ CP &=& \sqrt{16} \\ \mathbf{ CP } & \mathbf{=} & \mathbf{4} \\ \hline \end{array} \)

 

 

laugh

heureka  Jul 31, 2017
edited by heureka  Jul 31, 2017
edited by heureka  Jul 31, 2017
 #2
avatar
+1

the centroid always divide the median in 2:1 ratio 

so,cp:pm=2:1

cm^2=9+27

cm=6

cp=6(2/3)=4

Guest Jul 31, 2017

15 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details