+0  
 
0
126
1
avatar

The quadratic $2x^2+5x+12=19-7x$ has two solutions. What is the positive difference between these solutions?

Guest Jun 17, 2017

Best Answer 

 #1
avatar+26248 
+2

As follows:

 

\(2x^2+5x+12=19-7x\rightarrow 2x^2+12x-7=0\\ \text{ use the quadratic formula to find x } x= \frac{-12\pm \sqrt{12^2+4\times 2\times 7}}{2\times2}\\ x = \frac{-12\pm\sqrt{200}}{4}\\ \text{ positive difference: }\sqrt{200}/2\rightarrow 5\sqrt2\)

Alan  Jun 17, 2017
Sort: 

1+0 Answers

 #1
avatar+26248 
+2
Best Answer

As follows:

 

\(2x^2+5x+12=19-7x\rightarrow 2x^2+12x-7=0\\ \text{ use the quadratic formula to find x } x= \frac{-12\pm \sqrt{12^2+4\times 2\times 7}}{2\times2}\\ x = \frac{-12\pm\sqrt{200}}{4}\\ \text{ positive difference: }\sqrt{200}/2\rightarrow 5\sqrt2\)

Alan  Jun 17, 2017

8 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details