+0

# Help!

+1
74
4
+51

What is the value of the expression above when x = 2 and y = 3? Please show your work! :)

4x + 1/3y to the power of 2.    Oops!!

Sunrisesk8r  May 24, 2017
edited by Sunrisesk8r  May 24, 2017
Sort:

#1
+51
0

Sunrisesk8r  May 24, 2017
#2
+8
+1

What expression??

#3
+6765
+1

$$(4x +\dfrac{1}{3}y)^2$$This?

$$(4x + \dfrac{1}{3y})^2$$This?

$$4x + \dfrac{1}{3y^2}$$Or this?

$$4x + \dfrac{1}{(3y)^2}$$Or this?

$$4x + (\dfrac{1}{3y})^2$$This?

$$4x + \dfrac{1}{3}y^2$$Or even this?

Welp. Confused. Parentheses are important.

Nvm. I will do all of them

When x = 2, y = 3,

$$(4x +\dfrac{1}{3}y)^2\\ =(4\times 2+\dfrac{1}{3}\times 3)^2\\ =(8 + 1)^2\\ =9^2\\ =81$$

-------------------------------------------------------------------------

$$(4x + \dfrac{1}{3y})^2\\ =(4\times 2 + \dfrac{1}{3\times 3})^2\\ =(8 + \dfrac{1}{9})^2\\ =(\dfrac{73}{9})^2\\ =\dfrac{73^2}{9^2}\\ =\dfrac{5329}{81}$$

------------------------------------------------------------------------

$$4x + \dfrac{1}{3y^2}\\ =4\times 2 + \dfrac{1}{3\times 3^2}\\ =8 + \dfrac{1}{27}\\ =\dfrac{217}{27}$$

-----------------------------------------------------------------------

$$4x + \dfrac{1}{(3y)^2}\\ =4\times 2 + \dfrac{1}{(3\times 3)^2}\\ = 8 + \dfrac{1}{81}\\ =\dfrac{649}{81}$$

----------------------------------------------------------------------

$$4x + (\dfrac{1}{3y})^2\\ =4\times 2 + (\dfrac{1}{3\times 3})^2\\ =8 + \dfrac{1}{81}\\ =\dfrac{649}{81}$$

---------------------------------------------------------------------

$$4x + \dfrac{1}{3}y^2\\ =4\times 2 + \dfrac{1}{3}\times 3^2\\ =8 + 3\\ =11$$

MaxWong  May 25, 2017
#4
+51
0

Oh. Thanks.

Sunrisesk8r  Jun 1, 2017

### 13 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details