+0

# ??help

0
73
1

If \$F(a, b, c, d) = a^b + c ^ d\$, what is the value of \$b\$ such that \$F(4, b, 2, 3) = 12\$?

Guest Jun 17, 2017

#1
+4154
+3

F(a, b, c, d)  =  ab + cd        Replace  a  with  4  ,  c  with  2  ,  and  d  with  3  .

F(4, b, 2, 3)  =  4b + 23

F(4, b, 2, 3)  =  12               Replace   F(4, b, 2, 3)   with   4b + 23

4b + 23  =  12                       23  =  8

4b + 8   =  12                       Subtract  8  from both sides of the equation.

4b  =  12 - 8

4b  =  4

4b  =  41

b  =  1

hectictar  Jun 17, 2017
Sort:

#1
+4154
+3

F(a, b, c, d)  =  ab + cd        Replace  a  with  4  ,  c  with  2  ,  and  d  with  3  .

F(4, b, 2, 3)  =  4b + 23

F(4, b, 2, 3)  =  12               Replace   F(4, b, 2, 3)   with   4b + 23

4b + 23  =  12                       23  =  8

4b + 8   =  12                       Subtract  8  from both sides of the equation.

4b  =  12 - 8

4b  =  4

4b  =  41

b  =  1

hectictar  Jun 17, 2017

### 7 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details