+0

# Help

0
49
1

w What is twice the nonnegative difference between the solutions of the equation \$x^2-7x-4=40\$?

Guest Dec 29, 2017

#1
+5931
+1

First we need to find the solutions of the equation...

x2 - 7x - 4  =  40

Subtract  40  from both sides so that the right side is zero.

x2 - 7x - 44  =  0

Now we can factor the left side like this..

(x + 4)(x - 11)  =  0

Set each factor equal to zero and solve each for  x .

x + 4  =  0         or          x - 11  =  0

x  =  -4              or          x  =  11

The solutions of the equation are  -4  and  11 .

Twice the nonnegative difference of  -4  and  11  is...

2 * | -4 - 11 |   =   2 * | -15 |   =   2 * 15   =   30

hectictar  Dec 29, 2017
edited by hectictar  Dec 29, 2017
Sort:

#1
+5931
+1

First we need to find the solutions of the equation...

x2 - 7x - 4  =  40

Subtract  40  from both sides so that the right side is zero.

x2 - 7x - 44  =  0

Now we can factor the left side like this..

(x + 4)(x - 11)  =  0

Set each factor equal to zero and solve each for  x .

x + 4  =  0         or          x - 11  =  0

x  =  -4              or          x  =  11

The solutions of the equation are  -4  and  11 .

Twice the nonnegative difference of  -4  and  11  is...

2 * | -4 - 11 |   =   2 * | -15 |   =   2 * 15   =   30

hectictar  Dec 29, 2017
edited by hectictar  Dec 29, 2017

### 7 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details