+0

# help

0
131
2

which whole numbers between 2 and 40 can be divided by 4 with a remainder of 2 and also be divided by 5 with a remainder of 1

Guest Apr 21, 2017
Sort:

#1
+76918
+2

There may be an easier way, but

n mod 4  =  2 ...    n =  ( 6, 10, 14, 18, 22, 26, 30, 34, 38 )  =  A

n mod 5  = 1......  n = ( 6, 11, 16, 21, 26, 31, 36)  = B

A ∩ B   =  { 6, 26 }

CPhill  Apr 21, 2017
edited by CPhill  Apr 21, 2017
#2
+18610
+2

which whole numbers between 2 and 40 can be divided by 4 with a remainder of 2

and also be divided by 5 with a remainder of 1

$$\begin{array}{rcll} n &\equiv& {\color{red}2} \pmod {{\color{green}4}} \\ n &\equiv& {\color{red}1} \pmod {{\color{green}5}} \\ \text{Let } m &=& 4\cdot 5 = 20 \\ \end{array}$$

Because 4 and 5 are relatively prim ( gcd(4,5) = 1 ) we can go on:

$$\begin{array}{rcll} x &=& {\color{red}2} \cdot {\color{green}5} \cdot [ \frac{1}{ {\color{green}5} } \pmod{{\color{green}4}} ] +{\color{red}1} \cdot {\color{green}4} \cdot [ \frac{1}{ {\color{green}4} } \pmod{{\color{green}5}} ] +4\cdot 5 \cdot n \quad & | \quad n \in Z \\\\ && [ \frac{1}{ {\color{green}5} } \pmod{{\color{green}4}} ] \\ &=& [ {\color{green}5}^{\varphi({\color{green}4})-1} \pmod {{\color{green}4}} ] \quad & | \quad \varphi({\color{green}4})=4\cdot(1-\frac12)=2 \\ &=& [ {\color{green}5}^{2-1} \pmod {{\color{green}4}} ] \\ &=& [ {\color{green}5}^{1} \pmod {{\color{green}4}} ] \\ &=& [ {\color{green}1} \pmod {{\color{green}4}} ] \\ &=& [ 1] \\\\ && [ \frac{1}{ {\color{green}4} } \pmod{{\color{green}5}} ] \\ &=& [ {\color{green}4}^{\varphi({\color{green}5})-1} \pmod {{\color{green}5}} ] \quad & | \quad \varphi({\color{green}5})=5\cdot(1-\frac15)=4 \\ &=& [ {\color{green}4}^{4-1} \pmod {{\color{green}5}} ] \\ &=& [ {\color{green}4}^{3} \pmod {{\color{green}5}} ] \\ &=& [ {\color{green}4} \pmod {{\color{green}5}} ] \\ &=& [ 4 ] \\\\ x &=& {\color{red}2} \cdot {\color{green}5} \cdot [ 1] + {\color{red}1} \cdot {\color{green}4} \cdot [4] +4\cdot 5 \cdot n \quad & | \quad n \in Z \\\\ x &=& 10+16+20\cdot n \\ x &=& 26 + 20\cdot n \quad & | \quad x_{\text{min}} = 26 \pmod {m} \\ && & | \quad = 26 \pmod {20} = 6 \pmod {20} \\ x &=& 6 + 20\cdot n \quad & | \quad n \in Z \\\\ x_1 &=& 6 + 20\cdot 0 \quad & | \quad n=0 \\ x_1 &=& 6\checkmark \quad & | \quad 2\le x\le40 \\\\ x_2 &=& 6 + 20\cdot 1 \quad & | \quad n=1 \\ x_2 &=& 26\checkmark \quad & | \quad 2\le x\le40 \\ \end{array}$$

heureka  Apr 21, 2017

### 30 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details