+0

# Help!!!!!

+1
48
1
+359

$$x = {1+\frac{\sqrt{2}}{1+\frac{\sqrt{2}}{1+...}}}$$. Find $$\frac{1}{(x+1)(x-2)}$$. When your answer is in the form $$\frac{A+\sqrt{B}}{C}$$ , where A, B, and C are integers, what is |A|+|B|+|C|?

MIRB16  Sep 25, 2017

#1
+90535
+2

$$x = {1+\dfrac{\sqrt{2}}{1+\dfrac{\sqrt{2}}{1+...}}}$$.

$$x=1+\frac{\sqrt2}{x}\\ x^2=x+\sqrt2\\ x^2-x=\sqrt2\\$$

$$\frac{1}{(x+1)(x-2)}\\ =\frac{1}{(x+1)(x-2)}\\ =\frac{1}{x^2-x-2}\\ =\frac{1}{\sqrt2-2}\\ =\frac{-1}{2-\sqrt2}\\ =\frac{-1}{2-\sqrt2}\times \frac{2+\sqrt2}{2+\sqrt2}\\ =\frac{-(2+\sqrt2)}{4-2}\\ =\frac{-2-\sqrt2}{2}\\ =\frac{2+\sqrt2}{-2}\\$$  .

When your answer is in the form   $$\frac{A+\sqrt{B}}{C}$$   ,

A=+2,   B=+2,   C= -2

where A, B, and C are integers, what is |A|+|B|+|C|?

|A|+|B|+|C| = 2+2+2 = 6

Melody  Sep 25, 2017
edited by Melody  Sep 25, 2017
Sort:

#1
+90535
+2

$$x = {1+\dfrac{\sqrt{2}}{1+\dfrac{\sqrt{2}}{1+...}}}$$.

$$x=1+\frac{\sqrt2}{x}\\ x^2=x+\sqrt2\\ x^2-x=\sqrt2\\$$

$$\frac{1}{(x+1)(x-2)}\\ =\frac{1}{(x+1)(x-2)}\\ =\frac{1}{x^2-x-2}\\ =\frac{1}{\sqrt2-2}\\ =\frac{-1}{2-\sqrt2}\\ =\frac{-1}{2-\sqrt2}\times \frac{2+\sqrt2}{2+\sqrt2}\\ =\frac{-(2+\sqrt2)}{4-2}\\ =\frac{-2-\sqrt2}{2}\\ =\frac{2+\sqrt2}{-2}\\$$  .

When your answer is in the form   $$\frac{A+\sqrt{B}}{C}$$   ,

A=+2,   B=+2,   C= -2

where A, B, and C are integers, what is |A|+|B|+|C|?

|A|+|B|+|C| = 2+2+2 = 6

Melody  Sep 25, 2017
edited by Melody  Sep 25, 2017

### 26 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details