+0

# Help

0
136
3

a5 = 7, a8 = 56a5 = 7, a8 = 56. Find a11a11.

Guest May 7, 2017
Sort:

#1
+1

That's impossible, from a5 = 7 we can conclude that a = 1.4.

1.4 * 8 =/= 56.

If a = 1.4 then a11a11 = 237.16.

Guest May 7, 2017
#2
+90638
+2

The question is not presented well but I think this is what is meant.

$$a_5 = 7, a_8 = 56\qquad Find \;\;a_{11}$$

First I want to know if it is an AP or a GP, I assume it is one or the other?

Melody  May 7, 2017
#3
+18629
0

a5 = 7, a8 = 56. Find a11

$$\begin{array}{|lrcll|} \hline \text{AP:} &\mathbf{ t_z } &\mathbf{=}& \mathbf{ t_x\cdot (\frac{z-y}{x-y}) +t_y\cdot (\frac{x-z}{x-y}) } \\ \text{GP:} &\mathbf{ t_z } &\mathbf{=}& \mathbf{ t_x^{\frac{z-y}{x-y}} \cdot t_y^{\frac{x-z}{x-y}} } \\ \hline \end{array}$$

Let

$$\begin{array}{ll} x= 5 & t_x=t_5=7 \\ y=8 & t_y=t_8=56 \\ z=11 & t_z=t_{11}=? \\ \end{array}$$

$$\begin{array}{|lrcll|} \hline \text{AP:} &\mathbf{ t_z } &\mathbf{=}& \mathbf{ t_x\cdot (\frac{z-y}{x-y}) +t_y\cdot (\frac{x-z}{x-y}) } \\ &t_{11} &=& 7\cdot (\frac{11-8}{5-8}) + 56\cdot (\frac{5-11}{5-8}) \\ &t_{11} &=& 7\cdot (\frac{3}{-3}) + 56\cdot (\frac{-6}{-3}) \\ &t_{11} &=& 7\cdot (-1) + 56\cdot 2 \\ &t_{11} &=& -7 + 112 \\ & \mathbf{ t_{11} } & \mathbf{=} & \mathbf{105} \\ \hline \end{array}$$

$$\begin{array}{|lrcll|} \hline \text{GP:} &\mathbf{ t_z } &\mathbf{=}& \mathbf{ t_x^{\frac{z-y}{x-y}} \cdot t_y^{\frac{x-z}{x-y}} } \\ &t_{11} &=& 7^{\frac{11-8}{5-8}} \cdot 56^{\frac{5-11}{5-8}} \\ &t_{11} &=& 7^{-1} \cdot 56^{2} \\ &t_{11} &=& \frac{3136}{7} \\ & \mathbf{ t_{11} } & \mathbf{=} & \mathbf{448} \\ \hline \end{array}$$

heureka  May 8, 2017

### 22 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details