+0  
 
0
63
1
avatar

Let \[f(x) = \begin{cases} x^2+9 &\text{if }x<-5, \\ 3x-8&\text{if }x\ge-5. \end{cases} \]If $f(x)=10$, find the sum of all possible values of $x$.

Guest Aug 29, 2017
Sort: 

1+0 Answers

 #1
avatar+78577 
+2

\( \[f(x) = \begin{cases} x^2+9 &\text{if }x<-5, \\ 3x-8&\text{if }x\ge-5. \end{cases} \]If $f(x)=10$\)

 

Find the sum of all possible values of x

 

If   x^2 +  9  = 10

Then x^2  = 1

And x  =  ± 1     .....   but for this function,  x < -5,  so neither of these are good

 

If  3x  - 8  = 10

3x  = 18

x  = 6  .......   and  x  ≥ -5

 

So....the sum of all possible values of x  =  6

 

 

 

cool cool cool

CPhill  Aug 29, 2017

8 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details